[Python从零到壹] 五十四.图像增强及运算篇之局部直方图均衡化和自动色彩均衡化处理

举报
eastmount 发表于 2022/12/14 16:53:28 2022/12/14
【摘要】 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。第二部分将讲解图像运算和图像增强,上一篇文章介绍图像增强概念和直方图均衡化。这篇文章将继续讲解图像增强,包括图像局部直方图均衡化和自动色彩均衡化处理。希望文章对您有所帮助,如果有不足之处,还请海涵。

欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智能40篇、Python安全20篇、其他技巧10篇。您的关注、点赞和转发就是对秀璋最大的支持,知识无价人有情,希望我们都能在人生路上开心快乐、共同成长。

该系列文章主要讲解Python OpenCV图像处理和图像识别知识,前期主要讲解图像处理基础知识、OpenCV基础用法、常用图像绘制方法、图像几何变换等,中期讲解图像处理的各种运算,包括图像点运算、形态学处理、图像锐化、图像增强、图像平滑等,后期研究图像识别、图像分割、图像分类、图像特效处理以及图像处理相关应用。

第二部分将讲解图像运算和图像增强,上一篇文章介绍图像增强概念和直方图均衡化。这篇文章将继续讲解图像增强,包括图像局部直方图均衡化和自动色彩均衡化处理。希望文章对您有所帮助,如果有不足之处,还请海涵。

下载地址:记得点赞喔 O(∩_∩)O

前文赏析:

第一部分 基础语法

第二部分 网络爬虫

第三部分 数据分析和机器学习

  • [Python从零到壹] 十九.可视化分析之热力图和箱图绘制及应用详解
  • [Python从零到壹] 二十.可视化分析之Seaborn绘图万字详解
  • [Python从零到壹] 二十一.可视化分析之Pyechart绘图万字详解
  • [Python从零到壹] 二十二.可视化分析之OpenGL绘图万字详解
  • [Python从零到壹] 二十三.十大机器学习算法之决策树分类分析详解(1)
  • [Python从零到壹] 二十四.十大机器学习算法之KMeans聚类分析详解(2)
  • [Python从零到壹] 二十五.十大机器学习算法之KNN算法及图像分类详解(3)
  • [Python从零到壹] 二十六.十大机器学习算法之朴素贝叶斯算法及文本分类详解(4)
  • [Python从零到壹] 二十七.十大机器学习算法之线性回归算法分析详解(5)
  • [Python从零到壹] 二十八.十大机器学习算法之SVM算法分析详解(6)
  • [Python从零到壹] 二十九.十大机器学习算法之随机森林算法分析详解(7)
  • [Python从零到壹] 三十.十大机器学习算法之逻辑回归算法及恶意请求检测应用详解(8)
  • [Python从零到壹] 三十一.十大机器学习算法之Boosting和AdaBoost应用详解(9)
  • [Python从零到壹] 三十二.十大机器学习算法之层次聚类和树状图聚类应用详解(10)

第四部分 Python图像处理基础

第五部分 Python图像运算和图像增强

第六部分 Python图像识别和图像高阶案例

第七部分 NLP与文本挖掘

第八部分 人工智能入门知识

第九部分 网络攻防与AI安全

第十部分 知识图谱构建实战

扩展部分 人工智能高级案例


一.局部直方图均衡化

前文通过调用OpenCV中equalizeHist()函数实现直方图均衡化处理,该方法简单高效,但其实它是一种全局意义上的均衡化处理,很多时候这种操作不是很好,会把某些不该调整的部分给均衡处理了。同时,图像中不同的区域灰度分布相差甚远,对它们使用同一种变换常常产生不理想的效果,实际应用中,常常需要增强图像的某些局部区域的细节。

为了解决这类问题,Pizer等提出了局部直方图均衡化的方法(AHE),但AHE方法仅仅考虑了局部区域的像素,忽略了图像其他区域的像素,且对于图像中相似区域具有过度放大噪声的缺点。为此K. Zuiderveld等人提出了对比度受限CLAHE的图像增强方法,通过限制局部直方图的高度来限制局部对比度的增强幅度,从而限制噪声的放大及局部对比度的过增强,该方法常用于图像增强,也可以被用来进行图像去雾操作[1-2]。

在OpenCV中,调用函数createCLAHE()实现对比度受限的局部直方图均衡化。它将整个图像分成许多小块(比如按10×10作为一个小块),那么对每个小块进行均衡化。这种方法主要对于图像直方图不是那么单一的(比如存在多峰情况)图像比较实用。其函数原型如下所示:

retval = createCLAHE([, clipLimit[, tileGridSize]])

  • clipLimit参数表示对比度的大小
  • tileGridSize参数表示每次处理块的大小

调用createCLAHE()实现对比度受限的局部直方图均衡化的代码如下:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('lena.bmp')

#灰度转换
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 
#局部直方图均衡化处理
clahe = cv2.createCLAHE(clipLimit=2, tileGridSize=(10,10))

#将灰度图像和局部直方图相关联, 把直方图均衡化应用到灰度图 
result = clahe.apply(gray)

#显示图像
plt.subplot(221)
plt.imshow(gray, cmap=plt.cm.gray), plt.axis("off"), plt.title('(a)') 
plt.subplot(222)
plt.imshow(result, cmap=plt.cm.gray), plt.axis("off"), plt.title('(b)') 
plt.subplot(223)
plt.hist(img.ravel(), 256), plt.title('(c)') 
plt.subplot(224)
plt.hist(result.ravel(), 256), plt.title('(d)') 
plt.show()

输出结果如图1所示,图1(a)为原始图像,对应的直方图为图1©,图1(b)和图1(d)为对比度受限的局部直方图均衡化处理后的图像及对应直方图,它让图像的灰度值分布更加均衡。可以看到,相对于全局的直方图均衡化,这个局部的均衡化似乎得到的效果更自然一点。

在这里插入图片描述


二.自动色彩均衡化

Retinex算法是代表性的图像增强算法,它根据人的视网膜和大脑皮层模拟对物体颜色的波长光线反射能力而形成,对复杂环境下的一维条码具有一定范围内的动态压缩,对图像边缘有着一定自适应的增强。自动色彩均衡(Automatic Color Enhancement,ACE)算法是在Retinex算法的理论上提出的,它通过计算图像目标像素点和周围像素点的明暗程度及其关系来对最终的像素值进行校正,实现图像的对比度调整,产生类似人体视网膜的色彩恒常性和亮度恒常性的均衡,具有很好的图像增强效果[3-4]。

ACE算法包括两个步骤,一是对图像进行色彩和空域调整,完成图像的色差校正,得到空域重构图像;二是对校正后的图像进行动态扩展。ACE算法计算公式如下:

在这里插入图片描述

其中,W是权重参数,离中心点像素越远的W值越小;g是相对对比度调节参数,其计算方法如公式(22-2)所示,a表示控制参数,值越大细节增强越明显。

在这里插入图片描述

图2是条形码图像进行ACE图像增强后的效果图,通过图像增强后的图(b)对比度更强,改善了原图像的明暗程度,增强的同时保持了图像的真实性。

在这里插入图片描述

由于OpenCV中暂时没有ACE算法包,下面的代码是借鉴“zmshy2128”老师的文章,修改实现的彩色直方图均衡化处理[5]。

# -*- coding: utf-8 -*-
# By:Eastmount
# 参考zmshy2128老师文章
import cv2
import numpy as np
import math
import matplotlib.pyplot as plt

#线性拉伸处理
#去掉最大最小0.5%的像素值 线性拉伸至[0,1]
def stretchImage(data, s=0.005, bins = 2000):   
    ht = np.histogram(data, bins);
    d = np.cumsum(ht[0])/float(data.size)
    lmin = 0; lmax=bins-1
    while lmin<bins:
        if d[lmin]>=s:
            break
        lmin+=1
    while lmax>=0:
        if d[lmax]<=1-s:
            break
        lmax-=1
    return np.clip((data-ht[1][lmin])/(ht[1][lmax]-ht[1][lmin]), 0,1)

#根据半径计算权重参数矩阵
g_para = {}
def getPara(radius = 5):                        
    global g_para
    m = g_para.get(radius, None)
    if m is not None:
        return m
    size = radius*2+1
    m = np.zeros((size, size))
    for h in range(-radius, radius+1):
        for w in range(-radius, radius+1):
            if h==0 and w==0:
                continue
            m[radius+h, radius+w] = 1.0/math.sqrt(h**2+w**2)
    m /= m.sum()
    g_para[radius] = m
    return m

#常规的ACE实现
def zmIce(I, ratio=4, radius=300):                     
    para = getPara(radius)
    height,width = I.shape
    
    #Python3报错如下 使用列表append修改
    zh = []
    zw = []
    n = 0
    while n < radius:
        zh.append(0)
        zw.append(0)
        n += 1
    for n in range(height):
        zh.append(n)
    for n in range(width):
        zw.append(n)
    n = 0
    while n < radius:
        zh.append(height-1)
        zw.append(width-1)
        n += 1
    #print(zh)
    #print(zw)
    
    Z = I[np.ix_(zh, zw)]
    res = np.zeros(I.shape)
    for h in range(radius*2+1):
        for w in range(radius*2+1):
            if para[h][w] == 0:
                continue
            res += (para[h][w] * np.clip((I-Z[h:h+height, w:w+width])*ratio, -1, 1))
    return res

#单通道ACE快速增强实现
def zmIceFast(I, ratio, radius):
    print(I)
    height, width = I.shape[:2]
    if min(height, width) <=2:
        return np.zeros(I.shape)+0.5
    Rs = cv2.resize(I, (int((width+1)/2), int((height+1)/2)))
    Rf = zmIceFast(Rs, ratio, radius)             #递归调用
    Rf = cv2.resize(Rf, (width, height))
    Rs = cv2.resize(Rs, (width, height))
 
    return Rf+zmIce(I,ratio, radius)-zmIce(Rs,ratio,radius)   

#rgb三通道分别增强 ratio是对比度增强因子 radius是卷积模板半径          
def zmIceColor(I, ratio=4, radius=3):               
    res = np.zeros(I.shape)
    for k in range(3):
        res[:,:,k] = stretchImage(zmIceFast(I[:,:,k], ratio, radius))
    return res

#主函数
if __name__ == '__main__':
    img = cv2.imread('test01.png')
    res = zmIceColor(img/255.0)*255
    cv2.imwrite('Ice.jpg', res)

运行结果如图3和图4所示,ACE算法能有效进行图像去雾处理,实现图像的细节增强。

在这里插入图片描述


三.总结

本文主要讲解图像局部直方图均衡化和自动色彩均衡化处理。这些算法可以广泛应用于图像增强、图像去噪、图像去雾等领域。

感谢在求学路上的同行者,不负遇见,勿忘初心。图像处理系列主要包括三部分,分别是:

在这里插入图片描述

在这里插入图片描述

请添加图片描述

2022年即将离去,又是忙碌的一年,感谢女神的鼓励和小珞治愈的笑容。十月份会更加忙碌,希望一切顺利。守得云开见明月,加油!读博四年,还是写了一些东西,从初入安全的无知到现在的懵懂,也记录一些笔记,也希望对大家有所帮助。今年确实没啥时间写博客了,也没太多时间详细解答博友的问题,还请见谅。图片中颜色越浅甚至白色的时候,自己往往越忙,更多的博客和代码是寒暑假分享,项目、学习、科研、技术,最重要的还是家庭和亲情,娜美人生,感恩前行。爱你们喔,晚安娜。​傲娇的表情,小珞的玩具,哈哈~

在这里插入图片描述
在这里插入图片描述

(By:Eastmount 2022-12-14 夜于武汉 http://blog.csdn.net/eastmount/ )


参考文献:

  • [1]王浩,张叶,沈宏海,张景忠.图像增强算法综述[J].中国光学,2017,10(04):438-448.
  • [2]李艳梅. 图像增强的相关技术及应用研究[D].电子科技大学,2013.
  • [3]S. Bidon, Olivier Besson, J. Y. Tourneret. The Adaptive Coherence Estimator is the Generalized Likelihood Ratio Test for a Class of Heterogeneous Environments[J]. IEEE Signal Processing Letters, 2008, 15: 281-284.
  • [4]eastmount. [Python图像处理] 三十八.OpenCV图像增强和图像去雾万字详解(直方图均衡化、局部直方图均衡化、自动色彩均衡化)[EB/OL]. (2021-03-12). https://blog.csdn.net/ Eastmount/article/details/114706950.
  • [5]zmshy2128. 自动色彩均衡(ACE)快速算法[EB/OL]. (2016-12-05). https://www.cnblogs.com/zmshy2128/p/6135551.html.
【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。