用python代码给对象加上一顶圣诞帽
【摘要】
环境与测试图
主要是基于dlib实现,自己安装 测试图:
代码
import numpy as np
import cv2
import dlib
# 给img中的人头像加上圣诞帽,人脸最好...
环境与测试图
主要是基于dlib实现,自己安装
测试图:
代码
import numpy as np
import cv2
import dlib
# 给img中的人头像加上圣诞帽,人脸最好为正脸
def add_hat(img,hat_img):
# 分离rgba通道,合成rgb三通道帽子图,a通道后面做mask用
r,g,b,a = cv2.split(hat_img)
rgb_hat = cv2.merge((r,g,b))
cv2.imwrite("hat_alpha.jpg",a)
# ------------------------- 用dlib的人脸检测代替OpenCV的人脸检测-----------------------
# # 灰度变换
# gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# # 用opencv自带的人脸检测器检测人脸
# face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
# faces = face_cascade.detectMultiScale(gray,1.05,3,cv2.CASCADE_SCALE_IMAGE,(50,50))
# ------------------------- 用dlib的人脸检测代替OpenCV的人脸检测-----------------------
# dlib人脸关键点检测器
predictor_path = "shape_predictor_5_face_landmarks.dat"
predictor = dlib.shape_predictor(predictor_path)
# dlib正脸检测器
detector = dlib.get_frontal_face_detector()
# 正脸检测
dets = detector(img, 1)
# 如果检测到人脸
if len(dets)>0:
for d in dets:
x,y,w,h = d.left(),d.top(), d.right()-d.left(), d.bottom()-d.top()
# x,y,w,h = faceRect
# cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2,8,0)
# 关键点检测,5个关键点
shape = predictor(img, d)
# for point in shape.parts():
# cv2.circle(img,(point.x,point.y),3,color=(0,255,0))
# cv2.imshow("image",img)
# cv2.waitKey()
# 选取左右眼眼角的点
point1 = shape.part(0)
point2 = shape.part(2)
# 求两点中心
eyes_center = ((point1.x+point2.x)//2,(point1.y+point2.y)//2)
# cv2.circle(img,eyes_center,3,color=(0,255,0))
# cv2.imshow("image",img)
# cv2.waitKey()
# 根据人脸大小调整帽子大小
factor = 1.5
resized_hat_h = int(round(rgb_hat.shape[0]*w/rgb_hat.shape[1]*factor))
resized_hat_w = int(round(rgb_hat.shape[1]*w/rgb_hat.shape[1]*factor))
if resized_hat_h > y:
resized_hat_h = y-1
# 根据人脸大小调整帽子大小
resized_hat = cv2.resize(rgb_hat,(resized_hat_w,resized_hat_h))
# 用alpha通道作为mask
mask = cv2.resize(a,(resized_hat_w,resized_hat_h))
mask_inv = cv2.bitwise_not(mask)
# 帽子相对与人脸框上线的偏移量
dh = 0
dw = 0
# 原图ROI
# bg_roi = img[y+dh-resized_hat_h:y+dh, x+dw:x+dw+resized_hat_w]
bg_roi = img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)]
# 原图ROI中提取放帽子的区域
bg_roi = bg_roi.astype(float)
mask_inv = cv2.merge((mask_inv,mask_inv,mask_inv))
alpha = mask_inv.astype(float)/255
# 相乘之前保证两者大小一致(可能会由于四舍五入原因不一致)
alpha = cv2.resize(alpha,(bg_roi.shape[1],bg_roi.shape[0]))
# print("alpha size: ",alpha.shape)
# print("bg_roi size: ",bg_roi.shape)
bg = cv2.multiply(alpha, bg_roi)
bg = bg.astype('uint8')
cv2.imwrite("bg.jpg",bg)
# cv2.imshow("image",img)
# cv2.waitKey()
# 提取帽子区域
hat = cv2.bitwise_and(resized_hat,resized_hat,mask = mask)
cv2.imwrite("hat.jpg",hat)
# cv2.imshow("hat",hat)
# cv2.imshow("bg",bg)
# print("bg size: ",bg.shape)
# print("hat size: ",hat.shape)
# 相加之前保证两者大小一致(可能会由于四舍五入原因不一致)
hat = cv2.resize(hat,(bg_roi.shape[1],bg_roi.shape[0]))
# 两个ROI区域相加
add_hat = cv2.add(bg,hat)
# cv2.imshow("add_hat",add_hat)
# 把添加好帽子的区域放回原图
img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)] = add_hat
# 展示效果
# cv2.imshow("img",img )
# cv2.waitKey(0)
return img
# 读取帽子图,第二个参数-1表示读取为rgba通道,否则为rgb通道
hat_img = cv2.imread("hat2.png",-1)
# 读取头像图
img = cv2.imread("1.png")
output = add_hat(img,hat_img)
# 展示效果
cv2.imshow("output",output )
cv2.waitKey(0)
cv2.imwrite("output.jpg",output)
# import glob as gb
# img_path = gb.glob("./images/*.jpg")
# for path in img_path:
# img = cv2.imread(path)
# # 添加帽子
# output = add_hat(img,hat_img)
# # 展示效果
# cv2.imshow("output",output )
# cv2.waitKey(0)
cv2.destroyAllWindows()
运行效果与完整项目文件
完整项目文件:
公众号:玩转大数据
回复:圣诞帽
文章来源: chuanchuan.blog.csdn.net,作者:川川菜鸟,版权归原作者所有,如需转载,请联系作者。
原文链接:chuanchuan.blog.csdn.net/article/details/122780207
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)