【深度学习入门案例】Senta情感分析

举报
川川菜鸟 发表于 2021/10/15 23:50:05 2021/10/15
1.8k+ 0 0
【摘要】 文章目录 一.前言二.数据准备三.数据读取四.加载预训练模型测试五.完整源码 一.前言 情感倾向分析(Sentiment Classification,简称Senta)针对带有主观描述...

一.前言

情感倾向分析(Sentiment Classification,简称Senta)针对带有主观描述的中文文本,可自动判断该文本的情感极性类别并给出相应的置信度,能够帮助企业理解用户消费习惯、分析热点话题和危机舆情监控,为企业提供有利的决策支持。

二.数据准备

创建test.text文档
在这里插入图片描述

三.数据读取

'''
用户想要利用Senta完成对该文件的情感分析预测,只需读入该文件,将文件内容存成list,list中每个元素是待预测句子。
'''
with open("test.txt", 'r') as f:
    try:
        test_text = []
        for line in f:
            test_text.append(line.strip())
    except:
            print('读取失败')
print(test_text)

  
 

在这里插入图片描述

四.加载预训练模型测试

import paddlehub as hub
senta = hub.Module(name="senta_bilstm")
#预测
input_dict = {"text": test_text}
results = senta.sentiment_classify(data=input_dict)

for result in results:
    print(result)

  
 

返回:
在这里插入图片描述
可以看到判断准确率很高,基本是能准确判断出是积极还是消极的话。

五.完整源码

# coding=gbk
"""
作者:川川
@时间  : 2021/8/29 21:30
群:970353786
"""
'''
用户想要利用Senta完成对该文件的情感分析预测,只需读入该文件,将文件内容存成list,list中每个元素是待预测句子。
'''
with open("test.txt", 'r') as f:
    try:
        test_text = []
        for line in f:
            test_text.append(line.strip())
    except:
            print('读取失败')
print(test_text)
''':cvar
加载预训练模型,如果想尝试其他模型,只需要更换Module中的name参数即可.
'''
import paddlehub as hub
senta = hub.Module(name="senta_bilstm")
#预测
input_dict = {"text": test_text}
results = senta.sentiment_classify(data=input_dict)

for result in results:
    print(result)

  
 

文章来源: chuanchuan.blog.csdn.net,作者:川川菜鸟,版权归原作者所有,如需转载,请联系作者。

原文链接:chuanchuan.blog.csdn.net/article/details/119986267

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

作者其他文章

评论(0

抱歉,系统识别当前为高风险访问,暂不支持该操作

    全部回复

    上滑加载中

    设置昵称

    在此一键设置昵称,即可参与社区互动!

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。