《深度学习之TensorFlow入门、原理与进阶实战》—3.3.6 定义“运算”

举报
华章计算机 发表于 2019/05/31 14:13:16 2019/05/31
【摘要】 本书摘自《深度学习之TensorFlow入门、原理与进阶实战》一书中的第3章,第3.3.6节,编著是李金洪.

3.3.6  定义“运算”

  定义“运算”的过程是建立模型的核心过程,直接决定了模型的拟合效果,具体的代码演示在前面也介绍过了。这里主要阐述一下定义运算的类型,以及其在深度学习中的作用。

  1.定义正向传播模型

  在前面“3-1线性回归.py”的例子中使用的网络结构很简单,只有一个神经元。在后面会学到多层神经网络、卷积神经网、循环神经网络及更深层的GoogLeNet、Resnet等,它们都是由神经元以不同的组合方式组成的网络结构,而且每年还会有很多更高效且拟合性更强的新结构诞生。

  2.定义损失函数

  损失函数主要是计算“输出值”与“目标值”之间的误差,是配合反向传播使用的。为了在反向传播中可以找到最小值,要求该函数必须是可导的。

?提示:损失函数近几年来没有太大变化。读者只需要记住常用的几种,并能够了解内部原理就可以了,不需要掌握太多细节,因为TensorFlow框架已经为我们做好了。


【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。