数学建模学习(68):机器学习训练模型的保存与模型使用
【摘要】
机器学习模型通常需要数小时或数天才能运行,尤其是在具有许多特征的大型数据集上。如果你的机器坏了,你会丢失你的模型,你需要从头开始重新训练它。
Pickle 是一个有用的 Python 工具,可让你保存模...
机器学习模型通常需要数小时或数天才能运行,尤其是在具有许多特征的大型数据集上。如果你的机器坏了,你会丢失你的模型,你需要从头开始重新训练它。
Pickle 是一个有用的 Python 工具,可让你保存模型,最大限度地减少冗长的重新训练,并允许你共享、提交和重新加载预先训练的机器学习模型。
Pickle 是一个通用的对象序列化模块,可用于序列化和反序列化对象。虽然它最常与保存和重新加载经过训练的机器学习模型相关联,但它实际上可以用于任何类型的对象。以下是如何使用 Pickle 将训练好的模型保存到文件并重新加载以获取预测。
模型保存
接着上篇内容:数学建模学习67,代码也是在原来的基础上继续添加,两行即可保存模型,这里把model保存为model.pkl:
import pickle
pickle.dump(model, open('model.pkl'
- 1
- 2
文章来源: chuanchuan.blog.csdn.net,作者:川川菜鸟,版权归原作者所有,如需转载,请联系作者。
原文链接:chuanchuan.blog.csdn.net/article/details/124828951
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)