软件测试|数据分析神器pandas教程(一)

举报
霍格沃兹测试开发 发表于 2023/03/31 17:54:27 2023/03/31
【摘要】 前言Python是非常适合用于数据分析的,除了Python代码简单以外,Python还有非常多的第三方库,对于数据分析有很大帮助,今天我们就介绍一下Python进行数据分析的神器——pandas。 安装从2019年1月1号开始,新发布的pandas将只支持Python3版本,所以我们的教程也以python3.7为例进行演示。安装pandas和安装其他第三方库类似,只需要一条简单的命令即可,...

前言

Python是非常适合用于数据分析的,除了Python代码简单以外,Python还有非常多的第三方库,对于数据分析有很大帮助,今天我们就介绍一下Python进行数据分析的神器——pandas。

安装

从2019年1月1号开始,新发布的pandas将只支持Python3版本,所以我们的教程也以python3.7为例进行演示。

安装pandas和安装其他第三方库类似,只需要一条简单的命令即可,命令如下:

pip install pandas

注:日常使用中,pandas通常和numpy结合使用,所以我们还需要同时安装好numpy模块。

验证安装是否成功,我们可以运行一个简单脚本验证是否安装成功,代码如下:

import pandas

print(pandas.__version__)

-------------------------------
输出结果如下:
1.3.5

简单示例

下面是我们的一个简单的示例,代码如下:

import pandas as pd

dataset = {
  'player': ["Bayern", "Muller", "Germany"],
  'game': ['德甲', '欧冠', '欧洲杯']
}

mydata = pd.DataFrame(dataset)

print(mydata)

-----------------------
输出结果如下:
    player game
0   Bayern   德甲
1   Muller   欧冠
2  Germany  欧洲杯

当然,我们可以在dataset中继续添加其他内容,读取的内容也会按照一样的顺序出现,代码如下:

import pandas as pd

dataset = {
  'team': ["Bayern", "Dortmond", "Germany"],
  'game': ['德甲', '欧冠', '德国杯'],
  'palyer': ['穆西亚拉', '格雷茨卡', '基米希'],
  'enemy': ['man city', 'chelsea', 'paris']
}

mydata = pd.DataFrame(dataset)

print(mydata)

----------------------
输出结果如下:
       team game palyer     enemy
0    Bayern   德甲   穆西亚拉  man city
1  Dortmond   欧冠   格雷茨卡   chelsea
2   Germany  德国杯    基米希     paris

注:日常工作中,我们通常在导入时将pandas导入为pd

总结

本文主要介绍了pandas的安装还有一个简单示例,我们需要注意新版本pandas不再支持Python2.x版本,后续我们将介绍pandas的数据结构。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。