MapReduce切片机制

举报
波波烤鸭 发表于 2022/03/30 00:28:31 2022/03/30
【摘要】 MapReduce切片机制 为什么需要切片   MapReduce是一个分布式计算框架,处理的是海量数据的计算。那么并行运算必不可免,但是到底并行多少个Map任务来计算呢?每个Map任务计算哪些数据呢...

MapReduce切片机制

为什么需要切片

  MapReduce是一个分布式计算框架,处理的是海量数据的计算。那么并行运算必不可免,但是到底并行多少个Map任务来计算呢?每个Map任务计算哪些数据呢?这些我们数据我们不能够凭空估计,只能根据实际数据的存储情况来动态分配,而我们要介绍的切片就是要解决这个问题,

在这里插入图片描述

切片机制原理

  切片的规则我们需要通过阅读源代码来了解。首先我们来看下hadoop中默认的两个参数配置

1.默认参数

官网地址:http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml

mapreduce.job.split.metainfo.maxsize	10000000
mapreduce.input.fileinputformat.split.minsize	0

  
 
  • 1
  • 2

在这里插入图片描述
在这里插入图片描述

2. 源码查看

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

注意:SPLIT_SLOP = 1.1,即当划分后剩余文件大小除splitSize大于1.1时,循环继续,小于1.1时退出循环,将剩下的文件大小归到一个切片上去。

// 128MB
 long blockSize = file.getBlockSize();
 // 128MB
 long splitSize = computeSplitSize(blockSize, minSize, maxSize);
 // 文件的大小 260MB
 long bytesRemaining = length;
 // 第一次 260/128=2.x > 1.1
 // 第二次 132/128=1.03 <1.1 不执行循环
 while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
   // 获取块的索引
   int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
   // 将块的信息保存到splits集合中
   splits.add(makeSplit(path, length-bytesRemaining, splitSize,
               blkLocations[blkIndex].getHosts(),
               blkLocations[blkIndex].getCachedHosts()));
   // 260-128=132MB
   bytesRemaining -= splitSize;
 }
 // 将剩余的132MB添加到splits集合中
if (bytesRemaining != 0) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
           blkLocations[blkIndex].getHosts(),
           blkLocations[blkIndex].getCachedHosts()));
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

3.切片总结

FileInputFormat中默认的切片机制

  1. 简单地按照文件的内容长度进行切片
  2. 切片大小,默认等于block大小,可以通过调整参数修改,注意1.1的问题
  3. 切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
  4. 一个切片(split)对应一个MapTask事例
  5. 一个job的map阶段并行度由客户端在提交job时决定
比如待处理数据有两个文件:
	file1.txt    260M
	file2.txt    10M
经过FileInputFormat的切片机制运算后,形成的切片信息如下
	file1.txt.split1--  0~128
	file1.txt.split2--  128~260
	file2.txt.split1--  0~10M。

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

文章来源: dpb-bobokaoya-sm.blog.csdn.net,作者:波波烤鸭,版权归原作者所有,如需转载,请联系作者。

原文链接:dpb-bobokaoya-sm.blog.csdn.net/article/details/89031776

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。