初识Flink

举报
小米粒-biubiubiu 发表于 2020/12/04 00:19:16 2020/12/04
【摘要】 Apache Flink是一个用于分布式流和批处理数据处理的开源平台。Flink的核心是流数据流引擎,为数据流上的分布式计算提供数据分发,通信和容错。Flink在流引擎之上构建批处理,覆盖本机迭代支持,托管内存和程序优化。 一、Flink 的下载安装启动 设置:下载并启动Flink Flink可在Linux,Mac OS X和Windows上运行。为了能够运行Flink...

Apache Flink是一个用于分布式流和批处理数据处理的开源平台。Flink的核心是流数据流引擎,为数据流上的分布式计算提供数据分发,通信和容错。Flink在流引擎之上构建批处理,覆盖本机迭代支持,托管内存和程序优化。

一、Flink 的下载安装启动

设置:下载并启动Flink

Flink可在Linux,Mac OS X和Windows上运行。为了能够运行Flink,唯一的要求是安装一个有效的Java 8.x. Windows用户,请查看Windows上的Flink指南,该指南介绍了如何在Windows上运行Flink以进行本地设置。

您可以通过发出以下命令来检查Java的正确安装:

java -version
 

如果你有Java 8,输出将如下所示:


   
  1. java version "1.8.0_111"
  2. Java(TM) SE Runtime Environment (build 1.8.0_111-b14)
  3. Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)
  1. 下载页面下载二进制文件。您可以选择任何您喜欢的Hadoop / Scala组合。如果您打算只使用本地文件系统,任何Hadoop版本都可以正常工作。
  2. 转到下载目录。
  3. 解压缩下载的存档。

    
  1. $ cd ~/Downloads # Go to download directory
  2. $ tar xzf flink-*.tgz # Unpack the downloaded archive
  3. $ cd flink-1.7.0

二、启动本地Flink群集

$ ./bin/start-cluster.sh  # Start Flink
  

检查web前端ui页面http://localhost:8081,并确保一切都正常运行。Web前端应报告单个可用的TaskManager实例。

调度员:概述

您还可以通过检查logs目录中的日志文件来验证系统是否正在运行:


   
  1. $ tail log/flink-*-standalonesession-*.log
  2. INFO ... - Rest endpoint listening at localhost:8081
  3. INFO ... - http://localhost:8081 was granted leadership ...
  4. INFO ... - Web frontend listening at http://localhost:8081.
  5. INFO ... - Starting RPC endpoint for StandaloneResourceManager at akka://flink/user/resourcemanager .
  6. INFO ... - Starting RPC endpoint for StandaloneDispatcher at akka://flink/user/dispatcher .
  7. INFO ... - ResourceManager akka.tcp://flink@localhost:6123/user/resourcemanager was granted leadership ...
  8. INFO ... - Starting the SlotManager.
  9. INFO ... - Dispatcher akka.tcp://flink@localhost:6123/user/dispatcher was granted leadership ...
  10. INFO ... - Recovering all persisted jobs.
  11. INFO ... - Registering TaskManager ... under ... at the SlotManager.

 

三、阅读代码

您可以在Scala中找到此SocketWindowWordCount示例的完整源代码,并在GitHub上找到Java

  • Scala的

  
  1. object SocketWindowWordCount {
  2. def main(args: Array[String]) : Unit = {
  3. // the port to connect to
  4. val port: Int = try {
  5. ParameterTool.fromArgs(args).getInt("port")
  6. } catch {
  7. case e: Exception => {
  8. System.err.println("No port specified. Please run 'SocketWindowWordCount --port <port>'")
  9. return
  10. }
  11. }
  12. // get the execution environment
  13. val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
  14. // get input data by connecting to the socket
  15. val text = env.socketTextStream("localhost", port, '\n')
  16. // parse the data, group it, window it, and aggregate the counts
  17. val windowCounts = text
  18. .flatMap { w => w.split("\\s") }
  19. .map { w => WordWithCount(w, 1) }
  20. .keyBy("word")
  21. .timeWindow(Time.seconds(5), Time.seconds(1))
  22. .sum("count")
  23. // print the results with a single thread, rather than in parallel
  24. windowCounts.print().setParallelism(1)
  25. env.execute("Socket Window WordCount")
  26. }
  27. // Data type for words with count
  28. case class WordWithCount(word: String, count: Long)
  29. }

 


  
  1. public class SocketWindowWordCount {
  2. public static void main(String[] args) throws Exception {
  3. // the port to connect to
  4. final int port;
  5. try {
  6. final ParameterTool params = ParameterTool.fromArgs(args);
  7. port = params.getInt("port");
  8. } catch (Exception e) {
  9. System.err.println("No port specified. Please run 'SocketWindowWordCount --port <port>'");
  10. return;
  11. }
  12. // get the execution environment
  13. final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
  14. // get input data by connecting to the socket
  15. DataStream<String> text = env.socketTextStream("localhost", port, "\n");
  16. // parse the data, group it, window it, and aggregate the counts
  17. DataStream<WordWithCount> windowCounts = text
  18. .flatMap(new FlatMapFunction<String, WordWithCount>() {
  19. @Override
  20. public void flatMap(String value, Collector<WordWithCount> out) {
  21. for (String word : value.split("\\s")) {
  22. out.collect(new WordWithCount(word, 1L));
  23. }
  24. }
  25. })
  26. .keyBy("word")
  27. .timeWindow(Time.seconds(5), Time.seconds(1))
  28. .reduce(new ReduceFunction<WordWithCount>() {
  29. @Override
  30. public WordWithCount reduce(WordWithCount a, WordWithCount b) {
  31. return new WordWithCount(a.word, a.count + b.count);
  32. }
  33. });
  34. // print the results with a single thread, rather than in parallel
  35. windowCounts.print().setParallelism(1);
  36. env.execute("Socket Window WordCount");
  37. }
  38. // Data type for words with count
  39. public static class WordWithCount {
  40. public String word;
  41. public long count;
  42. public WordWithCount() {}
  43. public WordWithCount(String word, long count) {
  44. this.word = word;
  45. this.count = count;
  46. }
  47. @Override
  48. public String toString() {
  49. return word + " : " + count;
  50. }
  51. }
  52. }

四、运行示例

现在,我们将运行此Flink应用程序。它将从套接字读取文本,并且每5秒打印一次前5秒内每个不同单词的出现次数,即处理时间的翻滚窗口,只要文字漂浮在其中。

  • 首先,我们使用netcat来启动本地服务器
$ nc -l 9000
  
  • 提交Flink计划:

   
  1. $ ./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9000
  2. Starting execution of program

程序连接到套接字并等待输入。您可以检查Web界面以验证作业是否按预期运行:

调度员:概述(续)

调度程序:运行作业

  • 单词在5秒的时间窗口(处理时间,翻滚窗口)中计算并打印到stdout。监视TaskManager的输出文件并写入一些文本nc(输入在点击后逐行发送到Flink):

   
  1. $ nc -l 9000
  2. lorem ipsum
  3. ipsum ipsum ipsum
  4. bye

.out文件将在每个时间窗口结束时,只要打印算作字浮在,例如:


   
  1. $ tail -f log/flink-*-taskexecutor-*.out
  2. lorem : 1
  3. bye : 1
  4. ipsum : 4

停止Flink你可以执行如下命令:

$ ./bin/stop-cluster.sh
  

 

 

文章来源: blog.csdn.net,作者:血煞风雨城2018,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/qq_31905135/article/details/86649409

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。