初识Flink
Apache Flink是一个用于分布式流和批处理数据处理的开源平台。Flink的核心是流数据流引擎,为数据流上的分布式计算提供数据分发,通信和容错。Flink在流引擎之上构建批处理,覆盖本机迭代支持,托管内存和程序优化。
一、Flink 的下载安装启动
设置:下载并启动Flink
Flink可在Linux,Mac OS X和Windows上运行。为了能够运行Flink,唯一的要求是安装一个有效的Java 8.x. Windows用户,请查看Windows上的Flink指南,该指南介绍了如何在Windows上运行Flink以进行本地设置。
您可以通过发出以下命令来检查Java的正确安装:
java -version
如果你有Java 8,输出将如下所示:
java version "1.8.0_111"Java(TM) SE Runtime Environment (build 1.8.0_111-b14)Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)
$ cd ~/Downloads # Go to download directory$ tar xzf flink-*.tgz # Unpack the downloaded archive$ cd flink-1.7.0
二、启动本地Flink群集
$ ./bin/start-cluster.sh # Start Flink
检查web前端ui页面在http://localhost:8081,并确保一切都正常运行。Web前端应报告单个可用的TaskManager实例。
您还可以通过检查logs
目录中的日志文件来验证系统是否正在运行:
$ tail log/flink-*-standalonesession-*.log INFO ... - Rest endpoint listening at localhost:8081 INFO ... - http://localhost:8081 was granted leadership ... INFO ... - Web frontend listening at http://localhost:8081. INFO ... - Starting RPC endpoint for StandaloneResourceManager at akka://flink/user/resourcemanager . INFO ... - Starting RPC endpoint for StandaloneDispatcher at akka://flink/user/dispatcher . INFO ... - ResourceManager akka.tcp://flink@localhost:6123/user/resourcemanager was granted leadership ... INFO ... - Starting the SlotManager. INFO ... - Dispatcher akka.tcp://flink@localhost:6123/user/dispatcher was granted leadership ... INFO ... - Recovering all persisted jobs. INFO ... - Registering TaskManager ... under ... at the SlotManager.
三、阅读代码
您可以在Scala中找到此SocketWindowWordCount示例的完整源代码,并在GitHub上找到Java。
Scala的
object SocketWindowWordCount { def main(args: Array[String]) : Unit = { // the port to connect to val port: Int = try { ParameterTool.fromArgs(args).getInt("port") } catch { case e: Exception => { System.err.println("No port specified. Please run 'SocketWindowWordCount --port <port>'") return } } // get the execution environment val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment // get input data by connecting to the socket val text = env.socketTextStream("localhost", port, '\n') // parse the data, group it, window it, and aggregate the counts val windowCounts = text .flatMap { w => w.split("\\s") } .map { w => WordWithCount(w, 1) } .keyBy("word") .timeWindow(Time.seconds(5), Time.seconds(1)) .sum("count") // print the results with a single thread, rather than in parallel windowCounts.print().setParallelism(1) env.execute("Socket Window WordCount") } // Data type for words with count case class WordWithCount(word: String, count: Long) }
public class SocketWindowWordCount { public static void main(String[] args) throws Exception { // the port to connect to final int port; try { final ParameterTool params = ParameterTool.fromArgs(args); port = params.getInt("port"); } catch (Exception e) { System.err.println("No port specified. Please run 'SocketWindowWordCount --port <port>'"); return; } // get the execution environment final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // get input data by connecting to the socket DataStream<String> text = env.socketTextStream("localhost", port, "\n"); // parse the data, group it, window it, and aggregate the counts DataStream<WordWithCount> windowCounts = text .flatMap(new FlatMapFunction<String, WordWithCount>() { @Override public void flatMap(String value, Collector<WordWithCount> out) { for (String word : value.split("\\s")) { out.collect(new WordWithCount(word, 1L)); } } }) .keyBy("word") .timeWindow(Time.seconds(5), Time.seconds(1)) .reduce(new ReduceFunction<WordWithCount>() { @Override public WordWithCount reduce(WordWithCount a, WordWithCount b) { return new WordWithCount(a.word, a.count + b.count); } }); // print the results with a single thread, rather than in parallel windowCounts.print().setParallelism(1); env.execute("Socket Window WordCount"); } // Data type for words with count public static class WordWithCount { public String word; public long count; public WordWithCount() {} public WordWithCount(String word, long count) { this.word = word; this.count = count; } @Override public String toString() { return word + " : " + count; } } }
四、运行示例
现在,我们将运行此Flink应用程序。它将从套接字读取文本,并且每5秒打印一次前5秒内每个不同单词的出现次数,即处理时间的翻滚窗口,只要文字漂浮在其中。
首先,我们使用netcat来启动本地服务器
$ nc -l 9000
提交Flink计划:
$ ./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9000Starting execution of program
程序连接到套接字并等待输入。您可以检查Web界面以验证作业是否按预期运行:
单词在5秒的时间窗口(处理时间,翻滚窗口)中计算并打印到
stdout
。监视TaskManager的输出文件并写入一些文本nc
(输入在点击后逐行发送到Flink):
$ nc -l 9000lorem ipsumipsum ipsum ipsumbye
该.out
文件将在每个时间窗口结束时,只要打印算作字浮在,例如:
$ tail -f log/flink-*-taskexecutor-*.outlorem : 1bye : 1ipsum : 4
要停止Flink你可以执行如下命令:
$ ./bin/stop-cluster.sh
- 点赞
- 收藏
- 关注作者
评论(0)