基于ADAS的车道线检测算法matlab仿真

举报
yd_293572134 发表于 2024/06/19 22:07:38 2024/06/19
【摘要】 1.课题概述        基于ADAS的车道线检测算法,通过hough变换和边缘检测方法提取视频样板中的车道线,然后根据车道线的弯曲情况,判决是直形,右转或者左转等。并用高亮标注车道线和车辆前方路面。 2.系统仿真结果   3.核心程序与模型版本:MATLAB2022a Pt_line_dir1 = cross(l1,l2); Pt_line_dir1 = P...

1.课题概述

        基于ADAS的车道线检测算法,通过hough变换和边缘检测方法提取视频样板中的车道线,然后根据车道线的弯曲情况,判决是直形,右转或者左转等。并用高亮标注车道线和车辆前方路面。

 

2.系统仿真结果

 

1.jpeg

2.jpeg

 

 

3.核心程序与模型

版本:MATLAB2022a

        Pt_line_dir1 = cross(l1,l2);
         Pt_line_dir1 = Pt_line_dir1 ./ Pt_line_dir1(3);

         Pt_line_dir2 = cross(l3,l2);
         Pt_line_dir2 = Pt_line_dir2 ./ Pt_line_dir2(3);

         Pt_vdir1     = cross(Vle1, l2);
         Pt_vdir1     = Pt_vdir1 ./ Pt_vdir1(3);
Pt_vratio    = Pt_vdir1(1) / size(II0,2);
         % 设定动作名称为'左弯'  
         if Pt_vratio> 0.47 &&Pt_vratio< 0.485
            Actions = '左弯';
            flag    = 1;
         elseif Pt_vratio>= 0.485 &&Pt_vratio<= 0.51% 设定动作名称为'直行'  
            Actions = '直行';
            flag    = 0;
         else
            Actions = '右弯';% 设定动作名称为'右弯'  
            flag    = -1;
         end
         % 插入一个透明的车道屏幕  
         x        = [p1(1) Pt_line_dir1(1) Pt_line_dir2(1) p1(2)];
         y        = [p2(1) Pt_line_dir1(2) Pt_line_dir2(2) p2(2)];
Tmask    = poly2mask(x,y,size(II0,1), size(II0,2));

         if flag==-1  % 如果标志位为-1,表示需要执行'右弯'动作  
             IIm0     = II0;
Rvedio(Tmask == 1) = 2*Rvedio(Tmask == 1);
             IIm0(:,:,1)        = Rvedio;
         end
         if flag== 0  % 如果标志位为0,表示需要执行'直行'动作  
             IIm0     = II0;
Gvedio(Tmask == 1) = 2*Gvedio(Tmask == 1);
             IIm0(:,:,2)        = Gvedio;
         end
         if flag== 1  % 如果标志位为1,表示需要执行'左弯'动作  
             IIm0     = II0;
Bvedio(Tmask == 1) = 2*Bvedio(Tmask == 1);
             IIm0(:,:,3)        = Bvedio;
         end


figure(1)
imshow(IIm0), hold on
         if flag==-1% 显示车道  
            plot(p1,p2,'LineWidth',4,'Color','green');
            plot([Pt_line_dir1(1),Pt_line_dir2(1)],[Pt_line_dir1(2), Pt_line_dir2(2)],'LineWidth',4,'Color','green');
         end
         if flag== 0
            plot(p1,p2,'LineWidth',4,'Color','red');
            plot([Pt_line_dir1(1),Pt_line_dir2(1)],[Pt_line_dir1(2), Pt_line_dir2(2)],'LineWidth',4,'Color','red');
         end
         if flag== 1
            plot(p1,p2,'LineWidth',4,'Color','yellow');
            plot([Pt_line_dir1(1),Pt_line_dir2(1)],[Pt_line_dir1(2), Pt_line_dir2(2)],'LineWidth',4,'Color','yellow');
         end

title(Actions,'FontSize',16)
         frame=0;
         else 
         frame=frame+1;
pause(0.001);
    end
end
22

 

4.系统原理简介

        车道线检测是先进驾驶辅助系统(Advanced Driver Assistance Systems, ADAS)中的一项关键技术,它通过分析车辆前方摄像头的图像数据,实时检测并跟踪车道线,为驾驶员提供车道偏离预警、车道保持辅助等功能。车道线检测算法通常涉及图像处理、计算机视觉和机器学习等领域的知识。

 

4.1 图像预处理

      车道线检测算法的第一步是对摄像头捕捉的图像进行预处理,以提高车道线的可见性和检测准确性。预处理步骤通常包括灰度化、滤波和边缘检测。

 

灰度化

 

        将彩色图像转换为灰度图像可以简化计算,并减少光照变化对车道线检测的影响。灰度化可以通过以下公式实现:

 

Gray=0.299×Red+0.587×Green+0.114×Blue

 

滤波

 

        滤波的目的是去除图像中的噪声,同时保留车道线的边缘信息。常用的滤波器有高斯滤波器、中值滤波器等。以高斯滤波器为例,其数学表达式为:

 

3.png

 

边缘检测

 

         边缘检测算法用于提取图像中的车道线边缘。常用的边缘检测算法有SobelCanny等。以Canny边缘检测为例,其步骤包括高斯滤波、计算梯度幅值和方向、非极大值抑制和双阈值处理。

 

4.2 车道线特征提取

       经过预处理后,图像中的车道线边缘已经得到了增强。接下来,需要提取车道线的特征,如直线、曲线等。

 

霍夫变换

 

       霍夫变换是一种常用的直线检测方法。它通过将图像空间中的点映射到参数空间中,然后在参数空间中寻找峰值来检测直线。对于图像中的每个点(x,y),可以表示为极坐标形式的一条直线:

 

4.png

 

        对于弯曲的车道线,可以使用曲线拟合方法来提取车道线的形状。常用的曲线拟合方法有多项式拟合、贝塞尔曲线拟合等。以二次多项式拟合为例,车道线的形状可以表示为:

 

y=ax2+bx+c

 

其中,abc 是拟合得到的参数,x 是横向坐标,y 是纵向坐标。

 

4.3 车道线跟踪

       车道线跟踪是指在连续的视频帧中,根据前一帧的车道线检测结果,预测当前帧中车道线的位置。车道线跟踪可以提高车道线检测的稳定性和实时性。

 

 

 

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。