Python 绘制精美可视化数据分析图表 (二)-pyecharts
前言
画图表就是为了把复杂的事情表达清楚,画图表还可以弥补单用文字表达的缺欠,对有些事物解说更直接、更具体。就像我们平时会议所用的 PPT,能够更直观呈现讲述者所想表达的意思,且通俗易懂。总的来说,使用图表可以化复杂为简洁,化抽象为具体,使读者或听众更容易理解。
图表能跟直观表达和揭示数据的规律,人对图像更加敏感,对图文并茂的事物更容易接受,阅读更加简单高效,而且图表更显专业性,更具有说服力,更有利于沟通。
在上一篇文章《Python 绘制精美可视化数据分析图表 (一)-Matplotlib》中我们已经讲述过数据分析和绘制数据分析图表的好处,这里就不再赘述。直奔主题:pyecharts 是什么?有什么用?如何使用?接下来我们一起探讨交流。
首先我们来说说
pyecharts 是什么?有什么用?
pyecharts 是一个用于生成 Echarts 图表的类库,众所周知,Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒,可视化的类型丰富,不但提供了很多图表的实现方式,还提供了自定义的能力,可扩展出不同的图表,支持用户交互,且支持多种数据格式,大量数据也能流畅展现,支持动态数据的动画展示,同时还支持三维可视化,最重要的是能够跨平台,不管是 PC 还是各种移动端,多端完美适应,更适合我们日常的开发需求。而 pyecharts 就是 Echarts 的 Python 实现,同样拥有和 Echarts 一样强大的绘图能力。使 Python 和 Echarts 能更好对接,也是一把数据分析的利器。
pyechart 的特性:
基础的 API 设计使用如丝般流畅,支持链式调用
囊括了 30+种常见的图形,有应尽有
支持笔记 JupyterLab 环境,pyter Notebook
可轻松集成至 Django 等 WebFlask 框架
高度灵活的配置,可搭配出高性能的图形项
详细的文档和示例,帮助开发者上手项目
多达 400+个文件以及澳大利亚的地图,为地理数据可视化提供地图的支持
了解了 pyecharts 的来源和作用,最重要当然是学会使用它。如何使用?让我们继续往下看。
准备
安装
pyecharts 官网:https://pyecharts.org
pyecharts 分为两个大间版本 v0.5.X 和 v1 v0.5.X 和 v1 大间版本,v1 是一个全新的版本。0.5.x 版本将不再进行维护,0.5.x 版本代码位于 05x 分支,支持 Python2.7,3.4+。而 v1 仅支持 Python3.6+。
安装跟其他 Python 库安装一样简单,命令如下:(推荐)
pip install pyecharts
或 pip3 install pyecharts
还可以使用源码编译安装,推荐使用 pip 命令直接安装,避免不必要的麻烦,除非你有定制 pyecharts 的需求
$ git clone https://github.com/pyecharts/pyecharts.git
$ cd pyecharts
$ pip install -r requirements.txt
$ python setup.py install
# 或者执行 python install.py
查看安装版本
import pyecharts
print(pyecharts.__version__)
使用体验
安装完当然就是用起来,就跟学习一门语言一样,我们先快速上手,来个 Hello world.pyecharts 跟其他 Python 库一样使用简单,学习成本低.这就是他的优秀之处,matplotlib 能实现的 pyecharts 同样有.
导包
按需导入
from pyecharts.charts import Bar
from pyecharts.charts import Bar
bar = Bar()
bar.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
bar.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
bar.render()
上述例子同样可支持使用链式调用
from pyecharts.charts import Bar
bar = (
Bar()
.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
)
bar.render()
render 会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件
也可以传入路径参数,如 bar.render("hello.html")
就会在根目录创建一个 hello.html 的文件,html 文件里面会引用<script type="text/javascript" src="https://assets.pyecharts.org/assets/echarts.min.js"></script>
所以 pyecharts 是通过把 Python 代码转化为 html,然后调用官方提供的 Echarts 来绘图
常见问题及解决办法
图表无法展示问题
有些服务运行是需要服务器支持的,直接打开可能无法正常展示
解决方法:把生成的 render.html 文件放到服务器中运行
还有就是默认引用的资源为线上资源https://assets.pyecharts.org/assets/echarts.min.js
,没有联网的情况也是无法展示的
解决方法
如果没有安装服务器可使用官方提供的 pyecharts-assets
pyecharts-assets 提供了 pyecharts 的资源文件
可以通过 localhost-server 或者 notebook-server 启动本地服务。首先将项目下载到本地
# 通过 git clone$ git clone https://github.com/pyecharts/pyecharts-assets.git
# 或者直接下载压缩包$ wget https://github.com/pyecharts/pyecharts-assets/archive/master.zip
Localhost-Server
启动服务器
$ cd pyecharts-assets
$ python -m http.server
设置 host
# 只需要在顶部声明 CurrentConfig.ONLINE_HOST 即可
from pyecharts.globals import CurrentConfig
CurrentConfig.ONLINE_HOST = "http://127.0.0.1:8000/assets/"
# 接下来所有图形的静态资源文件都会来自刚启动的服务器
from pyecharts.charts import Bar
bar = Bar()
Notebook-Server
安装扩展插件
$ cd pyecharts-assets
# 安装并激活插件
$ jupyter nbextension install assets
$ jupyter nbextension enable assets/main
设置 host
# 只需要在顶部声明 CurrentConfig.ONLINE_HOST 即可
from pyecharts.globals import CurrentConfig, OnlineHostType
# OnlineHostType.NOTEBOOK_HOST 默认值为 http://localhost:8888/nbextensions/assets/
CurrentConfig.ONLINE_HOST = OnlineHostType.NOTEBOOK_HOST
# 接下来所有图形的静态资源文件都会来自刚启动的服务器
from pyecharts.charts import Bar
bar = Bar()
上述方法能够解决本地执行或者 jupyternote 无法显示的问题
初体验
接下来我们体验各种图表的绘制
使用 options 配置项
在 pyecharts 中,一切皆选项。
from pyecharts.charts import Bar
from pyecharts import options as opts
bar = (
Bar()
.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
.set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题"))
# 或者直接使用字典参数
# .set_global_opts(title_opts={"text": "主标题", "subtext": "副标题"})
)
bar.render()
V1 版本开始支持链式调用
你所看到的格式其实是
black
格式化以后的效果可以执行
pip install black
下载使用
使用 selenium 驱动程序将 pyecharts 输出渲染为图像
安装 snapshot_selenium
pip install snapshot-selenium
如果在运行程序报如下错误
selenium.common.exceptions.WebDriverException: Message: 'chromedriver' executable needs to be in PATH. Please see https://chromedriver.chromium.org/home
是因为系统没找到浏览器的驱动导致的
下载 chromedriver.exe 驱动安装上即可
常用的网址:
选择与浏览器对应的版本
查看浏览器版本
进入下载页面就会看到相关版本文件
选择对应版本进入页面下载正确平台驱动
windows 平台 32 和 64 位是通用的
具体操作
解压下载好的文件,并将解压好的 chromedriver.exe 文件复制到 Python 的安装目录下面,
要注意的是:Python 的安装目录在设置系统环境变量时是添加过的。
比如我的 python 是使用 Anaconda 安装的,所以安装目录是:E:\Anaconda3
(如果将 chromedriver.exe 放在其他的目录下面,也必须将这个目录添加到系统环境变量值里)
注意:如果设置了系统环境变量需要重启计算机后才会生效!!
解决报错问题,继续体验生成图片
from pyecharts.charts import Bar
from pyecharts.render import make_snapshot
# 使用 snapshot-selenium 渲染图片
from snapshot_selenium import snapshot
bar = (
Bar()
.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
.add_yaxis("商家A", [5, 20, 36, 10, 80, 90])
)
make_snapshot(snapshot, bar.render(), "mybar.png")
生成透明背景的高清图片,可以放到 PPT 展示
使用主题
有很多主题可供选择
from pyecharts.charts import Bar
from pyecharts import options as opts
# 内置主题类型可查看 pyecharts.globals.ThemeType
from pyecharts.globals import ThemeType
bar = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.))
.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
.add_yaxis("商家B", [15, 6, 45, 20, 35, 66])
.set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题"))
)
bar.render()
折线图
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
c = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
.render("line_base.html")
)
其他图表
pyecharts 不但能画基本图形,更复杂炫酷的都可以实现,比如地图,关系图.....
总结
pyecharts 可谓是应有仅有,完全能够满足你的日常需求,也是我平时用来搭建可视化大屏常用的工具.页面美观,使用简单,支持海量数据.pyecharts 还能够和各类 Web 框架整合,如:Flask,Django,Tornado.本文旨在抛转引玉和解决常见问题,更多炫酷用法待你发现,可参考官方文档(https://pyecharts.org/#/zh-cn/)
--不积跬步,无以至千里,每天进步一点点,是在默默地创造一个意想不到的奇迹,共勉~
- 点赞
- 收藏
- 关注作者
评论(0)