机器学习(七):sklearn转换器估计器及K-近邻算法

举报
是Dream呀 发表于 2022/08/27 00:54:38 2022/08/27
【摘要】 本文目录: 一、转换器和估计器1. 转换器2.估计器(sklearn机器学习算法的实现)3.估计器工作流程 二、K-近邻算法1.K-近邻算法(KNN)2. 定义3. 距离公式 三、电影...

在这里插入图片描述

📢📢📢📣📣📣
🌻🌻🌻Hello,大家好我叫是Dream呀,一个有趣的Python博主,多多关照😜😜😜
🏅🏅🏅作者简介:Python领域优质创作者🏆 CSDN年度博客之星🏆 阿里云专家博主🏆 华为云享专家🏆 51CTO专家博主🏆
💕入门须知:这片乐园从不缺乏天才,努力才是你的最终入场券!🚀🚀🚀
💓最后,愿我们都能在看不到的地方闪闪发光,一起加油进步🍺🍺🍺
🍉🍉🍉一万次悲伤,依然会有Dream,我一直在最温暖的地方等你~🌈🌈🌈
🌟🌟🌟✨✨✨

前言:
❤️本文选自:零基础学Python】本课程是针对Python入门&进阶打造的一全套课程,在这里,我将会一 一更新Python基础语法、Python爬虫、Web开发、 Django框架、Flask框架以及人工智能相关知识,帮助你成为Python大神,如果你喜欢的话就抓紧收藏订阅起来吧~💘💘💘

在这里插入图片描述

一、转换器和估计器

1. 转换器

想一下之前做的特征工程的步骤?

  • 1、实例化 (实例化的是一个转换器类(Transformer))
  • 2、调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)

我们把特征工程的接口称之为转换器,其中转换器调用有这么几种形式:

  • 标准化:
    (x - mean) / std
  • fit_transform()
    fit() 计算 每一列的平均值、标准差
    transform() (x - mean) / std进行最终的转换

这几个方法之间的区别是什么呢?我们看以下代码就清楚了

In [1]: from sklearn.preprocessing import StandardScaler

In [2]: std1 = StandardScaler()

In [3]: a = [[1,2,3], [4,5,6]]

In [4]: std1.fit_transform(a)
Out[4]:
array([[-1., -1., -1.],
       [ 1.,  1.,  1.]])

In [5]: std2 = StandardScaler()

In [6]: std2.fit(a)
Out[6]: StandardScaler(copy=True, with_mean=True, with_std=True)

In [7]: std2.transform(a)
Out[7]:
array([[-1., -1., -1.],
       [ 1.,  1.,  1.]])

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

从中可以看出,fit_transform的作用相当于transform加上fit。但是为什么还要提供单独的fit呢, 我们还是使用原来的std2来进行标准化看看:

In [8]: b = [[7,8,9], [10, 11, 12]]

In [9]: std2.transform(b)
Out[9]:
array([[3., 3., 3.],
       [5., 5., 5.]])

In [10]: std2.fit_transform(b)
Out[10]:
array([[-1., -1., -1.],
       [ 1.,  1.,  1.]])

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

2.估计器(sklearn机器学习算法的实现)

在sklearn中,估计器(estimator)是一个重要的角色,是一类实现了算法的API

  • 1 实例化一个estimator
  • 2 estimator.fit(x_train, y_train) 计算
    —— 调用完毕,模型生成
  • 3 模型评估:
    1)直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    y_test == y_predict
    2)计算准确率
    accuracy = estimator.score(x_test, y_test)

种类:
1、用于分类的估计器:

  • sklearn.neighbors k-近邻算法
  • sklearn.naive_bayes 贝叶斯
  • sklearn.linear_model.LogisticRegression 逻辑回归
  • sklearn.tree 决策树与随机森林

2、用于回归的估计器:

  • sklearn.linear_model.LinearRegression 线性回归
  • sklearn.linear_model.Ridge 岭回归

3、用于无监督学习的估计器

  • sklearn.cluster.KMeans 聚类

3.估计器工作流程

在这里插入图片描述

二、K-近邻算法

1.K-近邻算法(KNN)

在这里插入图片描述
你的“邻居”来推断出你的类别

2. 定义

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

来源:KNN算法最早是由Cover和Hart提出的一种分类算法

3. 距离公式

两个样本的距离可以通过如下公式计算,又叫欧式距离
在这里插入图片描述

三、电影类型分析

假设我们有现在几部电影
在这里插入图片描述
其中? 号电影不知道类别,如何去预测?我们可以利用K近邻算法的思想
在这里插入图片描述

1 问题

如果取的最近的电影数量不一样?会是什么结果?
k = 1 爱情片
k = 2 爱情片
……
k = 6 无法确定
k = 7 动作片

如果取的最近的电影数量不一样?会是什么结果?
- k 值取得过小,容易受到异常点的影响
- k 值取得过大,样本不均衡的影响

2 K-近邻算法数据的特征工程处理

结合前面的约会对象数据,分析K-近邻算法需要做什么样的处理
无量纲化的处理
标准化

四、K-近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm=‘auto’)
n_neighbors:k值

  • n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数
  • algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用 BallTree,‘kd_tree’将使用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。 (不同实现方式影响效率)

1.步骤

鸢尾花种类预测:
数据,我们用的就是sklearn中自带的鸢尾花数据。
1)获取数据
2)数据集划分
3)特征工程
标准化
4)KNN预估器流程
5)模型评估

2.代码

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
def knn_iris():
    """
    用KNN算法对鸢尾花进行分类
    :return:
    """
    # 1)获取数据
    iris = load_iris()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)

    # 3)特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4)KNN算法预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train, y_train)

    # 5)模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    return None

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

3.结果及分析

在这里插入图片描述
结果分析:
准确率: 分类算法的评估之一

1、k值取多大?有什么影响?
k值取很小:容易受到异常点的影响

k值取很大:受到样本均衡的问题

2、性能问题?
距离计算上面,时间复杂度高

五、K-近邻总结

优点:
简单,易于理解,易于实现,无需训练

缺点:

  • 懒惰算法,对测试样本分类时的计算量大,内存开销大
  • 必须指定K值,K值选择不当则分类精度不能保证

使用场景: 小数据场景,几千~几万样本,具体场景具体业务去测试

【系列好文推荐】

🎯🎯🎯
零基础学Python 开篇–全套学习路线
零基础学Python–Web开发(七):登录实现及功能测试
零基础学Python 机器学习实战——疫情数据分析与预测实战

🎯🎯🎯

欢迎订阅本专栏: 零基础学Python 系列课程是针对Python入门&进阶打造的一全套课程,在这里,我将会一 一更新Python基础语法、Python爬虫、Web开发、 Django框架、Flask框架以及人工智能相关知识,帮助你成为Python大神,如果你喜欢的话就抓紧收藏订阅起来吧~💘💘💘
💕💕💕 好啦,这就是今天要分享给大家的全部内容了,我们下期再见!✨ ✨ ✨
🍻🍻🍻如果你喜欢的话,就不要吝惜你的一键三连了~
在这里插入图片描述
在这里插入图片描述
⬇️⬇️ ⬇️ 商务合作|交流学习|粉丝福利|Python全套资料⬇️ ⬇️ ⬇️ 欢迎联系~

文章来源: xuyipeng.blog.csdn.net,作者:是Dream呀,版权归原作者所有,如需转载,请联系作者。

原文链接:xuyipeng.blog.csdn.net/article/details/126325362

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。