网易笔试之不要二——欧式距离的典型应用
【摘要】 前言 欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。 二维空间的公式 0ρ = sqrt( (x1-x2)^2+(y1-y2)^2 ) |x| = √( x2 + y2 ) 三维空...
前言
欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。
二维空间的公式
0ρ = sqrt( (x1-x2)^2+(y1-y2)^2 ) |x| = √( x2 + y2 )
三维空间的公式
0ρ = √( (x1-x2)^2+(y1-y2)^2+(z1-z2)^2 ) |x| = √( x2 + y2 + z2 )
解题思路:欧式距离不能为2,左上角(4*4)满足,右上角中即在同一行中看a[i][j-2]是否存在蛋糕,若不存在,则放置蛋糕。左下角中若在同一列,则看a[i-2][j]是否存在蛋糕,若不存在,则放置蛋糕。对于右下角,则看a[i-2][j]、a[i][j-2]是否存在蛋糕,若不存在,则放置蛋糕。
【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)