学习笔记|AdaBoost算法的训练误差分析

举报
darkpard 发表于 2021/12/14 18:26:28 2021/12/14
【摘要】 AdaBoost最基本的性质是它能在学习过程中不断减少训练误差,即在训练数据集上的分类误差率。AdaBoost的训练误差界定理: AdaBoost算法最终分类器的训练误差界为这里因为所以二类分类问题AdaBoost的训练误差界定理:证明:因为所以至于不等式这表明在此条件下AdaBoost的训练误差是以指数速率下降的。这一性质当然是很有吸引力的。注意,AdaBoost算法不需要知道下界γ,这下...

AdaBoost最基本的性质是它能在学习过程中不断减少训练误差,即在训练数据集上的分类误差率。

AdaBoost的训练误差界定理: AdaBoost算法最终分类器的训练误差界为

这里

因为

所以

二类分类问题AdaBoost的训练误差界定理:

证明:

因为

所以

至于不等式

这表明在此条件下AdaBoost的训练误差是以指数速率下降的。这一性质当然是很有吸引力的。

注意,AdaBoost算法不需要知道下界γ,这下是Freund与Schapire设计时所考虑的。与一些早期的提升方法不同,AdaBoost具有适应性,即它能适应弱分类器各自的训练误差率。这也是它的名称(适应的提升)的由来,Ada是Adaptive的简写。

参考文献

1.统计学习方法(第2版),李航著,清华大学出版社

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。