RDKit | 化合物活性数据的不平衡学习

举报
DrugAI 发表于 2021/07/15 04:43:38 2021/07/15
【摘要】 不平衡学习(Imbalanced learning) 不平衡数据的定义 顾名思义即我们的数据集样本类别极不均衡,以二分类问题为例,数据集中的多数类 为Smax,少数类为Smin,通常情况下把多数类样本的比例为100:1、1000:1,甚至是10000:1这种情况下为不平衡数据。 为什么不平衡学习 因为传统的学习方法以降低总体分类精度为目标,将所有样本一视同仁,...

不平衡学习(Imbalanced learning)

不平衡数据的定义


顾名思义即我们的数据集样本类别极不均衡,以二分类问题为例,数据集中的多数类 为Smax,少数类为Smin,通常情况下把多数类样本的比例为100:1、1000:1,甚至是10000:1这种情况下为不平衡数据。

为什么不平衡学习


因为传统的学习方法以降低总体分类精度为目标,将所有样本一视同仁,同等对待,造成了分类器在多数类的分类精度较高而在少数类的分类精 度很低。例如正负样本50:1的例子,算法就算全部预测为另一样本,准确率也会达到98%(50/51),因此传统的学习算法在不平衡数据集中具有较大的局限性。

不平衡学习的方法


解决方法主要分为两个方面。

  • 第一种方案主要从数据的角度出发,主要方法为抽样,既然我们的样本是不平衡的,那么可以通过某种策略进行抽样,从而让我们的数据相对均衡一些;
  • 第二种方案从算法的角度出发, 考虑不同误分类情况代价的差异性对算法进行优化,使得我们的算法在不平衡数据下也能有较好的效果。

文章来源: drugai.blog.csdn.net,作者:DrugAI,版权归原作者所有,如需转载,请联系作者。

原文链接:drugai.blog.csdn.net/article/details/102466647

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。