Flink执行流程源码解析
Flink 中的执行图可以分成四层:StreamGraph -> JobGraph -> ExecutionGraph -> 物理执行图。
StreamGraph:是根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的拓扑结构。
JobGraph:StreamGraph经过优化后生成了 JobGraph,提交给 JobManager 的数据结构。主要的优化为,将多个符合条件的节点 chain 在一起作为一个节点,这样可以减少数据在节点之间流动所需要的序列化/反序列化/传输消耗。
ExecutionGraph:JobManager 根据 JobGraph 生成ExecutionGraph。ExecutionGraph是JobGraph的并行化版本,是调度层最核心的数据结构。
物理执行图:JobManager 根据 ExecutionGraph 对 Job 进行调度后,在各个TaskManager 上部署 Task 后形成的“图”,并不是一个具体的数据结构。
而StreamingJobGraphGenerator就是StreamGraph转换为JobGraph。在这个类中,把ForwardPartitioner和RescalePartitioner列为POINTWISE分配模式,其他的为ALL_TO_ALL分配模式。代码如下:
if (partitioner instanceof ForwardPartitioner || partitioner instanceof RescalePartitioner) { jobEdge = downStreamVertex.connectNewDataSetAsInput( headVertex, // 上游算子(生产端)的实例(subtask)连接下游算子(消费端)的一个或者多个实例(subtask) DistributionPattern.POINTWISE, resultPartitionType); } else { jobEdge = downStreamVertex.connectNewDataSetAsInput( headVertex, // 上游算子(生产端)的实例(subtask)连接下游算子(消费端)的所有实例(subtask) DistributionPattern.ALL_TO_ALL, resultPartitionType); }
文章来源: www.jianshu.com,作者:百忍成金的虚竹,版权归原作者所有,如需转载,请联系作者。
原文链接:www.jianshu.com/p/aaa97e9d1faf
- 点赞
- 收藏
- 关注作者
评论(0)