ML之RS:基于用户的CF+LFM实现的推荐系统(基于相关度较高的用户实现电影推荐)
【摘要】 ML之RS:基于用户的CF+LFM实现的推荐系统(基于相关度较高的用户实现电影推荐)
目录
输出结果
实现代码
输出结果
实现代码
#ML之RS:基于CF和LFM实现的推荐系统import numpy as npimport pandas as pdimport matplotlib.pyplot as...
ML之RS:基于用户的CF+LFM实现的推荐系统(基于相关度较高的用户实现电影推荐)
目录
输出结果
实现代码
-
#ML之RS:基于CF和LFM实现的推荐系统
-
import numpy as np
-
import pandas as pd
-
import matplotlib.pyplot as plt
-
import time
-
import warnings
-
warnings.filterwarnings('ignore')
-
np.random.seed(1)
-
-
plt.style.use('ggplot')
-
# data = pd.read_csv('ml-20m/ratings_smaller.csv', index_col=0)
-
# movies = pd.read_csv('ml-20m/movies_smaller.csv')
-
-
#1、导入数据集
-
data = pd.read_csv('ml-latest-small/ratings.csv')
-
movies = pd.read_csv('ml-latest-small/movies.csv')
-
movies = movies.set_index('movieId')[['title', 'genres']]
-
-
#2、观察数据集
-
# How many users?
-
print (data.userId.nunique(), 'users')
-
-
# How many movies?
-
print (data.movieId.nunique(), 'movies')
-
-
# How possible ratings?
-
print (data.userId.nunique() * data.movieId.nunique(), 'possible ratings')
-
-
# How many do we have?
-
print (len(data), 'ratings')
-
print (100 * (float(len(data)) / (data.userId.nunique() * data.movieId.nunique())), '% of possible ratings')
-
-
-
-
# Number of ratings per users
-
fig = plt.figure(figsize=(10, 10))
-
ax = plt.hist(data.groupby('userId').apply(lambda x: len(x)).values, bins=50)
-
plt.xlabel("ratings")
-
plt.ylabel("users")
-
plt.title("Number of ratings per user")
-
plt.show()
-
-
# Number of ratings per movie
-
fig = plt.figure(figsize=(10, 10))
-
ax = plt.hist(data.groupby('movieId').apply(lambda x: len(x)).values, bins=50)
-
plt.xlabel("ratings")
-
plt.ylabel("movies")
-
plt.title('Number of ratings per movie')
-
plt.show()
-
-
# Ratings distribution评分分布
-
fig = plt.figure(figsize=(10, 10))
-
ax = plt.hist(data.rating.values, bins=5)
-
plt.xlabel("ratings")
-
plt.ylabel("numbers")
-
plt.title("Distribution of ratings")
-
plt.show()
-
-
# Average rating per user
-
fig = plt.figure(figsize=(10, 10))
-
ax = plt.hist(data.groupby('userId').rating.mean().values, bins=10)
-
plt.xlabel("Average rating")
-
plt.ylabel("numbers")
-
plt.title("Average rating per user")
-
plt.show()
-
-
# Average rating per movie
-
fig = plt.figure(figsize=(10, 10))
-
ax = plt.hist(data.groupby('movieId').rating.mean().values, bins=10)
-
plt.title('Average rating per movie')
-
plt.show()
-
-
# Top Movies,genres电影类型
-
average_movie_rating = data.groupby('movieId').mean()
-
top_movies = average_movie_rating.sort_values('rating', ascending=False).head(10)
-
pd.concat([movies.loc[top_movies.index.values],
-
average_movie_rating.loc[top_movies.index.values].rating], axis=1)
-
-
# Robust Top Movies - Lets weight the average rating by the square root of number of ratings让平均评分进行加权数的平方根
-
top_movies = data.groupby('movieId').apply(lambda x:len(x)**0.5 * x.mean()).sort_values('rating', ascending=False).head(10)
-
pd.concat([movies.loc[top_movies.index.values],
-
average_movie_rating.loc[top_movies.index.values].rating], axis=1)
-
-
controversial_movies = data.groupby('movieId').apply(lambda x:len(x)**0.25 * x.std()).sort_values('rating', ascending=False).head(10)
-
pd.concat([movies.loc[controversial_movies.index.values],
-
average_movie_rating.loc[controversial_movies.index.values].rating], axis=1)
相关文章推荐
GitHub
文章来源: yunyaniu.blog.csdn.net,作者:一个处女座的程序猿,版权归原作者所有,如需转载,请联系作者。
原文链接:yunyaniu.blog.csdn.net/article/details/81835446
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)