Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略daiding
【摘要】 Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略
目录
sklearn2pmml库函数的简介
1、一个典型的工作流总结
sklearn2pmml库函数的安装
sklearn2pmml库函数的使用方法
1、一个简单的鸢尾物种分类决策树模型
2、更精细的逻辑回归模型
sklea...
Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略
目录
sklearn2pmml库函数的简介
sklearn2pmml是用于将Scikit学习管道转换为PMML的Python库。这个库是JPMML-SkLearn命令行应用程序的一个瘦包装。有关支持的评估器和转换器类型的列表,请参考JPMML-SkLearn特性。
1、一个典型的工作流总结
- 创建一个PMMLPipeline对象,并像往常一样用管道步骤填充它。类sklearn2pmml.pipeline。PMMLPipeline扩展了sklearn.pipeline类。管道具有以下功能:
- 如果PMMLPipeline。fit(X, y)方法是用panda调用的。DataFrame或熊猫。Series对象作为X参数,然后它的列名用作特性名。否则,特征名称默认为“x1”、“x2”,..“x {number_of_features}”。
- 如果PMMLPipeline。fit(X, y)方法是用panda调用的。Series对象作为y参数,然后将其名称用作目标名称(对于监督模型)。否则,目标名称默认为“y”。
- 像往常一样安装和验证pipeline。
- 可选地,通过调用PMMLPipeline.verify(X)方法来计算验证数据并将其嵌入到PMMLPipeline对象中,该方法使用的是一个较小但有代表性的训练数据子集。
- 通过调用实用程序方法sklearn2pmml,将PMMLPipeline对象转换为本地文件系统中的PMML文件。pmml_destination_path sklearn2pmml(pipeline)。
sklearn2pmml库函数的安装
pip install sklearn2pmml
pip install --user -i https://pypi.tuna.tsinghua.edu.cn/simple sklearn2pmml
sklearn2pmml库函数的使用方法
1、一个简单的鸢尾物种分类决策树模型
-
import pandas
-
-
iris_df = pandas.read_csv("Iris.csv")
-
-
iris_X = iris_df[iris_df.columns.difference(["Species"])]
-
iris_y = iris_df["Species"]
-
-
from sklearn.tree import DecisionTreeClassifier
-
from sklearn2pmml.pipeline import PMMLPipeline
-
-
pipeline = PMMLPipeline([
-
("classifier", DecisionTreeClassifier())
-
])
-
pipeline.fit(iris_X, iris_y)
-
-
from sklearn2pmml import sklearn2pmml
-
-
sklearn2pmml(pipeline, "DecisionTreeIris.pmml", with_repr = True)
2、更精细的逻辑回归模型
-
import pandas
-
-
iris_df = pandas.read_csv("Iris.csv")
-
-
iris_X = iris_df[iris_df.columns.difference(["Species"])]
-
iris_y = iris_df["Species"]
-
-
from sklearn_pandas import DataFrameMapper
-
from sklearn.decomposition import PCA
-
from sklearn.feature_selection import SelectKBest
-
from sklearn.impute import SimpleImputer
-
from sklearn.linear_model import LogisticRegression
-
from sklearn2pmml.decoration import ContinuousDomain
-
from sklearn2pmml.pipeline import PMMLPipeline
-
-
pipeline = PMMLPipeline([
-
("mapper", DataFrameMapper([
-
(["Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"], [ContinuousDomain(), SimpleImputer()])
-
])),
-
("pca", PCA(n_components = 3)),
-
("selector", SelectKBest(k = 2)),
-
("classifier", LogisticRegression(multi_class = "ovr"))
-
])
-
pipeline.fit(iris_X, iris_y)
-
pipeline.verify(iris_X.sample(n = 15))
-
-
from sklearn2pmml import sklearn2pmml
-
-
sklearn2pmml(pipeline, "LogisticRegressionIris.pmml", with_repr = True)
文章来源: yunyaniu.blog.csdn.net,作者:一个处女座的程序猿,版权归原作者所有,如需转载,请联系作者。
原文链接:yunyaniu.blog.csdn.net/article/details/111502804
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)