Numpy mat 将数组转换为矩阵

举报
千江有水千江月 发表于 2020/12/27 21:59:14 2020/12/27
【摘要】 所属的课程名称及链接[AI基础课程--常用框架工具]环境信息* ModelArts  * Notebook - Multi-Engine 2.0 (python3)    * JupyterLab - Notebook - Conda-python3      * numpy 1.19.1Numpy np.mat np.matrix np.asmatrix 将数组转换为矩阵import nu...

所属的课程名称及链接


环境信息

  • * ModelArts
    •   * Notebook - Multi-Engine 2.0 (python3)
      •     * JupyterLab - Notebook - Conda-python3
        •       * numpy 1.19.1


Numpy np.mat np.matrix np.asmatrix 将数组转换为矩阵

import numpy as np
arr = np.array([[1,2],[3,4]])
print("arr",arr)
print("type(arr)",type(arr))
arr [[1 2]
 [3 4]]
type(arr) <class 'numpy.ndarray'>


m = np.mat(arr)
print("m",m)
print("type(m)",type(m))
print(id(arr),id(m))
m [[1 2]
 [3 4]]
type(m) <class 'numpy.matrix'>
139898878402768 139898871385560


'''
class matrix(ndarray)
 |  matrix(data, dtype=None, copy=True)
 |  
 |  .. note:: It is no longer recommended to use this class, even for linear
 |            algebra. Instead use regular arrays. The class may be removed
 |            in the future.
'''
m2 = np.matrix(arr)
print("m2",m2)
print("type(m2)",type(m2))
print(id(arr),id(m2))
m2 [[1 2]
 [3 4]]
type(m2) <class 'numpy.matrix'>
139898878402768 139898871385784


'''
Unlike `matrix`, `asmatrix` does not make a copy if the input is already
    a matrix or an ndarray.  Equivalent to ``matrix(data, copy=False)``.
'''
m3 = np.asmatrix(arr)
print("m3",m3)
print("type(m3)",type(m3))
print(id(arr),id(m3))
m3 [[1 2]
 [3 4]]
type(m3) <class 'numpy.matrix'>
139898878402768 139898871385672


help

help(np.mat)

Help on function asmatrix in module numpy:

asmatrix(data, dtype=None)
    Interpret the input as a matrix.
    
    Unlike `matrix`, `asmatrix` does not make a copy if the input is already
    a matrix or an ndarray.  Equivalent to ``matrix(data, copy=False)``.
    
    Parameters
    ----------
    data : array_like
        Input data.
    dtype : data-type
       Data-type of the output matrix.
    
    Returns
    -------
    mat : matrix
        `data` interpreted as a matrix.
    
    Examples
    --------
    >>> x = np.array([[1, 2], [3, 4]])
    
    >>> m = np.asmatrix(x)
    
    >>> x[0,0] = 5
    
    >>> m
    matrix([[5, 2],
            [3, 4]])


help(np.matrix)

Help on class matrix in module numpy:

class matrix(ndarray)
 |  matrix(data, dtype=None, copy=True)
 |  
 |  .. note:: It is no longer recommended to use this class, even for linear
 |            algebra. Instead use regular arrays. The class may be removed
 |            in the future.
 |  
 |  Returns a matrix from an array-like object, or from a string of data.
 |  A matrix is a specialized 2-D array that retains its 2-D nature
 |  through operations.  It has certain special operators, such as ``*``
 |  (matrix multiplication) and ``**`` (matrix power).
 |  
 |  Parameters
 |  ----------
 |  data : array_like or string
 |     If `data` is a string, it is interpreted as a matrix with commas
 |     or spaces separating columns, and semicolons separating rows.
 |  dtype : data-type
 |     Data-type of the output matrix.
 |  copy : bool
 |     If `data` is already an `ndarray`, then this flag determines
 |     whether the data is copied (the default), or whether a view is
 |     constructed.
 |  
 |  See Also
 |  --------
 |  array
 |  
 |  Examples
 |  --------
 |  >>> a = np.matrix('1 2; 3 4')
 |  >>> a
 |  matrix([[1, 2],
 |          [3, 4]])
 |  
 |  >>> np.matrix([[1, 2], [3, 4]])
 |  matrix([[1, 2],
 |          [3, 4]])
 |  
 |  Method resolution order:
 |      matrix
 |      ndarray
 |      builtins.object
 |  
 |  Methods defined here:
 ......

help(np.asmatrix)

Help on function asmatrix in module numpy:

asmatrix(data, dtype=None)
    Interpret the input as a matrix.
    
    Unlike `matrix`, `asmatrix` does not make a copy if the input is already
    a matrix or an ndarray.  Equivalent to ``matrix(data, copy=False)``.
    
    Parameters
    ----------
    data : array_like
        Input data.
    dtype : data-type
       Data-type of the output matrix.
    
    Returns
    -------
    mat : matrix
        `data` interpreted as a matrix.
    
    Examples
    --------
    >>> x = np.array([[1, 2], [3, 4]])
    
    >>> m = np.asmatrix(x)
    
    >>> x[0,0] = 5
    
    >>> m
    matrix([[5, 2],
            [3, 4]])


备注

1. 感谢老师的教学与课件  
2. 欢迎各位同学一起来交流学习心得^_^  
3. 沙箱实验、认证、论坛和直播,其中包含了许多优质的内容,推荐了解与学习。  


【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。