论文解读系列十:空洞卷积框架搜索
摘要:空洞卷积是标准卷积神经网络算子的一种变体,可以控制有效的感受野并处理对象的大尺度方差,而无需引入额外的计算。但是,在文献中很少讨论针对不同的数据,如何设计调整空洞卷积使其得到更好的感受野,进而提升模型性能。为了充分挖掘其潜力,本文提出了一种新的空洞卷积变体,即inception (dilated)卷积,其中卷积在不同轴,通道和层之间具有独立的空洞。同时,本文提出了一种基于统计优化的简单而高效的空洞搜索算法(EDO,effective dilation search),自适应搜索对训练数据友好的空洞卷积配置方法。该搜索方法以零成本方式运行,该方法极其快速地应用于大规模数据集。
方法
在不同任务中对于输入图像的大小和目标对象的不同,有效感受野(effictive reveptive field,ERF)的要求也有所不同。图像分类输入的尺寸比较小,目标检测中输入的size而比较大,目标的范围也很大。即使对于固定网络的同一任务,某一层卷积的最优解ERF也和标注卷积不一定一样,于是为了适应不同ERF的要求,需要针对不同任务提供一种通用的ERF算法。
本文提出一种膨胀卷积的变体,Inception卷积,他包含多种膨胀模式如下图:
Incetption 卷积提供了一个密集可能的ERF范围,该文提供了一种高效的膨胀优化算法(EOD),其中超网络的每层都是一个标准的卷积操作,该卷积包含了所有可能的膨胀模式。对每一层的选择,通过最小化原始卷积层和与所选膨胀模式的卷积的期望误差,使用一个预训练的权值解决选择问题。具体流程如下图所示:
上图为EDO的算法概述,以resnet50为例,我们先在训练数据上训练获得一个bottleneck卷积内核为(2dmax + 1) × (2dmax + 1)的res50。这个例子里,supernet的内核为5*5,所以dmax=2。然后对于卷积运算的每个filter的输出,我们要计算与预期输出的L1误差,选择最小的(这个例子里是E=3)。最后重新安排filter使相同的空洞卷积排在一起,就成为了我们的inception convolution。
实验结果
实证结果表明,本文方法在广泛的Baseline测试中获得了一致的性能提升。例如,通过简单地将ResNet-50主干中的3x3标准卷积替换为Inception Conv,将Faster-RCNN在MS-COCO上的mAP从36.4%提高到39.2%。此外,在ResNet-101骨干网中使用相同的替代方法,在自下而上的人体姿势估计上将AP得分从COCO val2017的AP得分从60.2%大幅提高到68.5%。
- 点赞
- 收藏
- 关注作者
评论(0)