超超超超级详细的多边形游戏问题分析(动态规划)
【摘要】
多边形游戏问题简介问题分析超详细解题步骤Java代码实现
多边形游戏
问题简介
首先呢,介绍一下多边形游戏是个什么东东多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形。每个顶点被赋予一个整数值,每条边被赋予一个运算符“+”或“*”。所有边依次用整数从1到n编号。游戏步骤: 将一条边删除选择一条边E及由E连接的2个顶点V1和V...
多边形游戏
问题简介
- 首先呢,介绍一下多边形游戏是个什么东东
- 多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形。每个顶点被赋予一个整数值,每条边被赋予一个运算符“+”或“*”。所有边依次用整数从1到n编号。
- 游戏步骤:
- 将一条边删除
- 选择一条边E及由E连接的2个顶点V1和V2
- 用一个新的顶点取代边E以及由E连接着的2个顶点V1和V2。将由顶点V1和V2的整数值通过边E上的运算得到的结果赋予新顶点
- 重复以上步骤,直到所有边都被删除,游戏结束。游戏的得分就是所剩顶点上的整数值
我们的问题是: 根据给定的多边形,计算最高分和最底分
问题分析
- 最优子结构性质
- 这里呢,它是满足最优子结构性质的,我们不做过多的解释,直接看它的求解方法
- 递归求解
-
首先,我们在p(i, j)在op[i+s]处断开, 最大值记为maxf(i,j,s),最小值记为minf(i,j,s)
-
因为只有加法和乘法,加法比较简单。对于乘法,可能存在负数,所以我们要对所有可能的结果做讨论,为了计算方便,我们可以定义如下表示
a=m[i,i+s,0] b=m[i,i+s,1]
c=m[i+s,j-s,0] d=m[i+s,j-s,1] -
当op[i+s]=‘+’
m[i,j,0]=a+c m[i,j,1]=b+d -
当op[i+s]=‘*’
m[i,j,0]=min{ac,ad,bc,bd}
m[i,j,1]=max{ac,ad,bc,bd} -
因此可有如下公式
-
至于s的断开位置,可以取 1 到 j - 1, 如下
-
接下来,就是超超超超级详细的解题步骤
超详细解题步骤
这里,我们举了这样一个栗子
详细步骤如下
m(1,1,1) = 9
m(1,1,0) = 9
m(2,1,1) = -4
m(2,1,0) = -4
m(3,1,1) = 9
m(3,1,0) = 9
m(4,1,1) = 10
m(4,1,0) = 10
m(5,1,1) = -10
m(5,1,0) = -10
m(1,2) = m(1,1)op(2)m(2,1)
op(2) = “+”
m(1,2,1) = m(1,1,1) + m(2,1,1) = 5
m(1,2,0) = m(1,1,0) + m(2,1,0) = 5
m(2,2) = m(2,1)op(3)m(3,1)
op(3) = “+”
m(2,2,1) = m(2,1,1) + m(3,1,1) = 5
m(2,2,0) = m(2,1,0) + m(3,1,0) = 5
m(3,2) = m(3,1)op(4)m(4,1)
op(4) = “+”
m(3,2,1) = m(3,1,1) + m(4,1,1) = 19
m(3,2,0) = m(3,1,0) + m(4,1,0) = 19
m(4,2) = m(4,1)op(5)m(5,1)
op(5) = “*”
m(4,2,1) = max{m(4,1,1)*m(5,1,1), m(4,1,1)*m(5,1,0), m(4,1,0)*m(5,1,1), m(4,1,0)*m(5,1,0)} = -100
m(4,2,0) = min{m(4,1,1)*m(5,1,1), m(4,1,1)*m(5,1,0), m(4,1,0)*m(5,1,1), m(4,1,0)*m(5,1,0)} = -100
m(5,2) = m(5,1)op(1)m(1,1)
m(5,2,1) = m(5,1,1) + m(1,1,1) = -1
m(5,2,0) = m(5,1,0) + m(1,1,0) = -1
m ( 1 , 3 ) = { m ( 1 , 1 ) o p ( 2 ) m ( 2 , 2 ) m ( 1 , 2 ) o p ( 3 ) m ( 3 , 1 ) m(1,3) =
{m(1,1)op(2)m(2,2)m(1,2)op(3)m(3,1)
m(1,3)={m(1,1)op(2)m(2,2)m(1,2)op(3)m(3,1)
op(2) = “+”
op(3) = “+”
m(1,3,1) = max{m(1,1,1)+m{2,2,1}, m(1,2,1)+m(3,1,1)} = 14 (m(1,1,1)+m(2,2,1))
m(1,3,0) = min{m(1,1,0)+m{2,2,0}, m(1,2,0)+m(3,1,0)} = 14 (m(1,1,0)+m(2,2,0))
m ( 2 , 3 ) = { m ( 2 , 1 ) o p ( 3 ) m ( 3 , 2 ) m ( 2 , 2 ) o p ( 4 ) m ( 4 , 1 ) m(2,3) =
{m(2,1)op(3)m(3,2)m(2,2)op(4)m(4,1)
m(2,3)={m(2,1)op(3)m(3,2)m(2,2)op(4)m(4,1)
op(3) = “+”
op(4) = “+”
m(2,3,1) = max{m(2,1,1)+m(3,2,1), m(2,2,1)+m(4,1,1)} = 15 (m(2,1,1)+m(3,2,1))
m(2,3,0) = min{m(2,1,0)+m(3,2,0), m(2,2,0)+m(4,1,0)} = 15 (m(2,1,0)+m(3,2,0))
m ( 3 , 3 ) = { m ( 3 , 1 ) o p ( 4 ) m ( 4 , 2 ) m ( 3 , 2 ) o p ( 5 ) m ( 5 , 1 ) m(3,3) =
{m(3,1)op(4)m(4,2)m(3,2)op(5)m(5,1)
m(3,3)={m(3,1)op(4)m(4,2)m(3,2)op(5)m(5,1)
op(4) = “+”
op(5) = “*”
m(3,3,1) = max{m(3,1,1)+m(4,2,1), max{m(3,2,1)*m(5,1,1), m(3,2,1)*m(5,1,0), m(3,2,0)*m(5,1,1), m(3,2,0)*m(5,1,0)}} = -91 (m(3,1,1)+m(4,2,1))
m(3,3,0) = min{m(3,1,0)+m(4,2,0), min{m(3,2,1)*m(5,1,1), m(3,2,1)*m(5,1,0), m(3,2,0)*m(5,1,1), m(3,2,0)*m(5,1,0)}} = -190 (m(3,2,1)*m(5,1,1))
m ( 4 , 3 ) = { m ( 4 , 1 ) o p ( 5 ) m ( 5 , 2 ) m ( 4 , 2 ) o p ( 1 ) m ( 1 , 1 ) m(4,3) =
{m(4,1)op(5)m(5,2)m(4,2)op(1)m(1,1)
m(4,3)={m(4,1)op(5)m(5,2)m(4,2)op(1)m(1,1)
op(5) = “*”
op(1) = “+”
m(4,3,1) = max{max{m(4,1,1)*m(5,2,1), m(4,1,1)*m(5,2,0), m(4,1,0)*m(5,2,1), m(4,1,0)*m(5,2,0)}, m(4,2,1)+m(1,1,1)} = -10 (m(4,1,1)*m(5,2,1))
m(4,3,0) = min{min{m(4,1,1)*m(5,2,1), m(4,1,1)*m(5,2,0), m(4,1,0)*m(5,2,1), m(4,1,0)*m(5,2,0)}, m(4,2,0)+m(1,1,0)} = -91 (m(4,2,0)+m(1,1,0))
m ( 5 , 3 ) = { m ( 5 , 1 ) o p ( 1 ) m ( 1 , 2 ) m ( 5 , 2 ) o p ( 2 ) m ( 2 , 1 ) m(5,3) =
{m(5,1)op(1)m(1,2)m(5,2)op(2)m(2,1)
m(5,3)={m(5,1)op(1)m(1,2)m(5,2)op(2)m(2,1)
op(1) = “+”
op(2) = “+”
m(5,3,1) = max{m(5,1,1)+m(1,2,1), m(5,2,1)+m(2,1,1)} = -5 (m(5,1,1)+m(1,2,1))
m(5,3,0) = min{m(5,1,0)+m(1,2,0), m(5,2,0)+m(2,1,0)} = -5 (m(5,1,0)+m(1,2,0))
m ( 1 , 4 ) = { m ( 1 , 1 ) o p ( 2 ) m ( 2 , 3 ) m ( 1 , 2 ) o p ( 3 ) m ( 3 , 2 ) m ( 1 , 3 ) o p ( 4 ) m ( 4 , 1 ) m(1,4) =
⎧⎩⎨m(1,1)op(2)m(2,3)m(1,2)op(3)m(3,2)m(1,3)op(4)m(4,1)
m(1,4)=⎩⎪⎨⎪⎧m(1,1)op(2)m(2,3)m(1,2)op(3)m(3,2)m(1,3)op(4)m(4,1)
op(2) = “+”
op(3) = “+”
op(4) = “+”
m(1,4,1) = max{m(1,1,1)+m(2,3,1), m(1,2,1)+m(3,2,1), m(1,3,1)+m(4,1,1)} = 24 (m(1,1,1)+m(1,2,1))
m(1,4,0) = min{m(1,1,0)+m(2,3,0), m(1,2,0)+m(3,2,0), m(1,3,0)+m(4,1,0)} = 24 (m(1,1,0)+m(2,3,0))
m ( 2 , 4 ) = { m ( 2 , 1 ) o p ( 3 ) m ( 3 , 3 ) m ( 2 , 2 ) o p ( 4 ) m ( 4 , 2 ) m ( 2 , 3 ) o p ( 5 ) m ( 5 , 1 ) m(2,4) =
⎧⎩⎨m(2,1)op(3)m(3,3)m(2,2)op(4)m(4,2)m(2,3)op(5)m(5,1)
m(2,4)=⎩⎪⎨⎪⎧m(2,1)op(3)m(3,3)m(2,2)op(4)m(4,2)m(2,3)op(5)m(5,1)
op(3) = “+”
op(4) = “+”
op(5) = “*”
m(2,4,1) = max{m(2,1,1)+m(3,3,1), m(2,2,1)+m(4,2,1), max{m(2,3,1)*m(5,1,1), m(2,3,1)*m(5,1,0), m(2,3,0)*m(5,1,1), m(2,3,0)*m(5,1,0)}} = -95 (m(2,1,1)+m(3,3,1))
m(2,4,0) = min{m(2,1,0)+m(3,3,0), m(2,2,0)+m(4,2,0), min{m(2,3,1)*m(5,1,1), m(2,3,1)*m(5,1,0), m(2,3,0)*m(5,1,1), m(2,3,0)*m(5,1,0)}} = -194 (m(2,1,0)+m(3,3,0))
m ( 3 , 4 ) = { m ( 3 , 1 ) o p ( 4 ) m ( 4 , 3 ) m ( 3 , 2 ) o p ( 5 ) m ( 5 , 2 ) m ( 3 , 3 ) o p ( 1 ) m ( 1 , 1 ) m(3,4) =
⎧⎩⎨m(3,1)op(4)m(4,3)m(3,2)op(5)m(5,2)m(3,3)op(1)m(1,1)
m(3,4)=⎩⎪⎨⎪⎧m(3,1)op(4)m(4,3)m(3,2)op(5)m(5,2)m(3,3)op(1)m(1,1)
op(4) = “+”
op(5) = “*”
op(1) = “+”
m(3,4,1) = max{m(3,1,1)+m(4,3,1), max{m(3,2,1)*m(5,2,1), m(3,2,1)*m(5,2,0), m(3,2,0)*m(5,2,1), m(3,2,0)*m(5,2,0)}, m(3,3,1)+m(1,1,1)} = -1 (m(3,1,1)+m(4,3,1))
m(3,4,0) = min{m(3,1,0)+m(4,3,0), min{m(3,2,1)*m(5,2,1), m(3,2,1)*m(5,2,0), m(3,2,0)*m(5,2,1), m(3,2,0)*m(5,2,0)}, m(3,3,0)+m(1,1,0)} = -181 (m(3,3,0)+m(1,1,0))
m ( 4 , 4 ) = { m ( 4 , 1 ) o p ( 5 ) m ( 5 , 3 ) m ( 4 , 2 ) o p ( 1 ) m ( 1 , 2 ) m ( 4 , 3 ) o p ( 2 ) m ( 2 , 1 ) m(4,4) =
⎧⎩⎨m(4,1)op(5)m(5,3)m(4,2)op(1)m(1,2)m(4,3)op(2)m(2,1)
m(4,4)=⎩⎪⎨⎪⎧m(4,1)op(5)m(5,3)m(4,2)op(1)m(1,2)m(4,3)op(2)m(2,1)
op(5) = “*”
op(1) = “+”
op(2) = “+”
m(4,4,1) = max{max{m(4,1,1)*m(5,3,1), m(4,1,1)*m(5,3,0), m(4,1,0)*m(5,3,1), m(4,1,0)*m(5,3,0)}, m(4,2,1)+m(1,2,1), m(4,3,1)+m(2,1,1)} = -14 (m(4,3,1)+m(2,1,1))
m(4,4,0) = min{min{m(4,1,1)*m(5,3,1), m(4,1,1)*m(5,3,0), m(4,1,0)*m(5,3,1), m(4,1,0)*m(5,3,0)}, m(4,2,0)+m(1,2,0), m(4,3,0)+m(2,1,0)} = -95 (m(4,2,0)+m(1,2,0))
m ( 5 , 4 ) = { m ( 5 , 1 ) o p ( 1 ) m ( 1 , 3 ) m ( 5 , 2 ) o p ( 2 ) m ( 2 , 2 ) m ( 5 , 3 ) o p ( 3 ) m ( 3 , 1 ) m(5,4) =
⎧⎩⎨m(5,1)op(1)m(1,3)m(5,2)op(2)m(2,2)m(5,3)op(3)m(3,1)
m(5,4)=⎩⎪⎨⎪⎧m(5,1)op(1)m(1,3)m(5,2)op(2)m(2,2)m(5,3)op(3)m(3,1)
op(1) = “+”
op(2) = “+”
op(3) = “+”
m(5,4,1) = max{m(5,1,1)+m(1,3,1), m(5,2,1)+m(2,2,1), m(5,3,1)+m(3,1,1)} = 4 (m(5,1,1)+m(1,3,1))
m(5,4,0) = min{m(5,1,0)+m(1,3,0), m(5,2,0)+m(2,2,0), m(5,3,0)+m(3,1,0)} = 4 (m(5,1,0)+m(1,3,0))
m ( 1 , 5 ) = { m ( 1 , 1 ) o p ( 2 ) m ( 2 , 4 ) m ( 1 , 2 ) o p ( 3 ) m ( 3 , 3 ) m ( 1 , 3 ) o p ( 4 ) m ( 4 , 2 ) m ( 1 , 4 ) o p ( 5 ) m ( 5 , 1 ) m(1,5) =
⎧⎩⎨⎪⎪⎪⎪⎪⎪m(1,1)op(2)m(2,4)m(1,2)op(3)m(3,3)m(1,3)op(4)m(4,2)m(1,4)op(5)m(5,1)
m(1,5)=⎩⎪⎪⎪⎨⎪⎪⎪⎧m(1,1)op(2)m(2,4)m(1,2)op(3)m(3,3)m(1,3)op(4)m(4,2)m(1,4)op(5)m(5,1)
op(2) = “+”
op(3) = “+”
op(4) = “+”
op(5) = “*”
m(1,5,1) = max{m(1,1,1)+m(2,4,1), m(1,2,1)+m(3,3,1), m(1,3,1)+m(4,2,1), max{m(1,4,1)*m(5,1,1), m(1,4,1)*m(5,1,0), m(1,4,0)*m(5,1,1), m(1,4,0)*m(5,1,0)}} = -86 (m(1,1,1)+m(2,4,1))
m(1,5,0) = min{m(1,1,0)+m(2,4,0), m(1,2,0)+m(3,3,0), m(1,3,0)+m(4,2,0), min{m(1,4,1)*m(5,1,1), m(1,4,1)*m(5,1,0), m(1,4,0)*m(5,1,1), m(1,4,0)*m(5,1,0)}} = -240 (m(1,4,1)*m(5,1,1))
m ( 2 , 5 ) = { m ( 2 , 1 ) o p ( 3 ) m ( 3 , 4 ) m ( 2 , 2 ) o p ( 4 ) m ( 4 , 3 ) m ( 2 , 3 ) o p ( 5 ) m ( 5 , 2 ) m ( 2 , 4 ) o p ( 1 ) m ( 1 , 1 ) m(2,5) =
⎧⎩⎨⎪⎪⎪⎪⎪⎪m(2,1)op(3)m(3,4)m(2,2)op(4)m(4,3)m(2,3)op(5)m(5,2)m(2,4)op(1)m(1,1)
m(2,5)=⎩⎪⎪⎪⎨⎪⎪⎪⎧m(2,1)op(3)m(3,4)m(2,2)op(4)m(4,3)m(2,3)op(5)m(5,2)m(2,4)op(1)m(1,1)
op(3) = “+”
op(4) = “+”
op(5) = “*”
op(1) = “+”
m(2,5,1) = max{m(2,1,1)+m(3,4,1), m(2,2,1)+m(4,3,1), max{m(2,3,1)*m(5,2,1), m(2,3,1)*m(5,2,0), m(2,3,0)*m(5,2,1), m(2,3,0)*m(5,2,0)}, m(2,4,1)+m(1,1,1)} = -5 (m(2,1,1)+m(3,4,1))
m(2,5,0) = min{m(2,1,0)+m(3,4,0), m(2,2,0)+m(4,3,0), min{m(2,3,1)*m(5,2,1), m(2,3,1)*m(5,2,0), m(2,3,0)*m(5,2,1), m(2,3,0)*m(5,2,0)}, m(2,4,0)+m(1,1,0)} = -185 (m(2,1,0)+m(3,4,0))
m ( 3 , 5 ) = { m ( 3 , 1 ) o p ( 4 ) m ( 4 , 4 ) m ( 3 , 2 ) o p ( 5 ) m ( 5 , 3 ) m ( 3 , 3 ) o p ( 1 ) m ( 1 , 2 ) m ( 3 , 4 ) o p ( 2 ) m ( 2 , 1 ) m(3,5) =
⎧⎩⎨⎪⎪⎪⎪⎪⎪m(3,1)op(4)m(4,4)m(3,2)op(5)m(5,3)m(3,3)op(1)m(1,2)m(3,4)op(2)m(2,1)
m(3,5)=⎩⎪⎪⎪⎨⎪⎪⎪⎧m(3,1)op(4)m(4,4)m(3,2)op(5)m(5,3)m(3,3)op(1)m(1,2)m(3,4)op(2)m(2,1)
op(4) = “+”
op(5) = “*”
op(1) = “+”
op(2) = “+”
m(3,5,1) = max{m(3,1,1)+m(4,4,1), max{m(3,2,1)*m(5,3,1), m(3,2,1)*m(5,3,0), m(3,2,0)*m(5,3,1), m(3,2,0)*m(5,3,0)}, m(3,3,1)+m(1,2,1), m(3,4,1)+m(2,1,1)} = -5 (m(3,1,1)+m(4,4,1))
m(3,5,0) = min{m(3,1,0)+m(4,4,0), min{m(3,2,1)*m(5,3,1), m(3,2,1)*m(5,3,0), m(3,2,0)*m(5,3,1), m(3,2,0)*m(5,3,0)}, m(3,3,0)+m(1,2,0), m(3,4,0)+m(2,1,0)} = -185 (m(3,3,0)+m(1,2,0))
m ( 4 , 5 ) = { m ( 4 , 1 ) o p ( 5 ) m ( 5 , 4 ) m ( 4 , 2 ) o p ( 1 ) m ( 1 , 3 ) m ( 4 , 3 ) o p ( 2 ) m ( 2 , 2 ) m ( 4 , 4 ) o p ( 3 ) m ( 3 , 1 ) m(4,5) =
⎧⎩⎨⎪⎪⎪⎪⎪⎪m(4,1)op(5)m(5,4)m(4,2)op(1)m(1,3)m(4,3)op(2)m(2,2)m(4,4)op(3)m(3,1)
m(4,5)=⎩⎪⎪⎪⎨⎪⎪⎪⎧m(4,1)op(5)m(5,4)m(4,2)op(1)m(1,3)m(4,3)op(2)m(2,2)m(4,4)op(3)m(3,1)
op(5) = “*”
op(1) = “+”
op(2) = “+”
op(3) = “+”
m(4,5,1) = max{max{m(4,1,1)*m(5,4,1), m(4,1,1)*m(5,4,0), m(4,1,0)*m(5,4,1), m(4,1,0)*m(5,4,0)}, m(4,2,1)+m(1,3,1), m(4,3,1)+m(2,2,1), m(4,4,1)+m(3,1,1)} = 40 (m(4,1,1)*m(5,4,1))
m(4,5,0) = min{min{m(4,1,1)*m(5,4,1), m(4,1,1)*m(5,4,0), m(4,1,0)*m(5,4,1), m(4,1,0)*m(5,4,0)}, m(4,2,0)+m(1,3,0), m(4,3,0)+m(2,2,0), m(4,4,0)+m(3,1,0)} = -86 (m(4,2,0)+m(1,3,0))
m ( 5 , 5 ) = { m ( 5 , 1 ) o p ( 1 ) m ( 1 , 4 ) m ( 5 , 2 ) o p ( 2 ) m ( 2 , 3 ) m ( 5 , 3 ) o p ( 3 ) m ( 3 , 2 ) m ( 5 , 4 ) o p ( 4 ) m ( 4 , 1 ) m(5,5) =
⎧⎩⎨⎪⎪⎪⎪⎪⎪m(5,1)op(1)m(1,4)m(5,2)op(2)m(2,3)m(5,3)op(3)m(3,2)m(5,4)op(4)m(4,1)
m(5,5)=⎩⎪⎪⎪⎨⎪⎪⎪⎧m(5,1)op(1)m(1,4)m(5,2)op(2)m(2,3)m(5,3)op(3)m(3,2)m(5,4)op(4)m(4,1)
op(1) = “+”
op(2) = “+”
op(3) = “+”
op(4) = “+”
m(5,5,1) = max{m(5,1,1)+m(1,4,1), m(5,2,2)+m(2,3,1), m(5,3,1)+m(3,2,1), m(5,4,1)+m(4,1,1)} = 14 (m(5,1,1)+m(1,4,1))
m(5,5,0) = min{m(5,1,0)+m(1,4,0), m(5,2,0)+m(2,3,0), m(5,3,0)+m(3,2,0), m(5,4,0)+m(4,1,0)} = 14 (m(5,1,0)+m(1,4,0))
至此,终于计算完毕,那么:
max = max{m(1,5,1), m(2,5,1), m(3,5,1), m(4,5,1), m(5,5,1)} = 40
max = min{m(1,5,0), m(2,5,0), m(3,5,0), m(4,5,0), m(5,5,0)} = -240
最后,是Java代码的实现过程
Java代码实现
package PolygonGame;
public class PolygonGame {
static int n; // 边和点个数
static int minf, maxf;
static int[] v; // 点集
static char[] op; // 边集
static int[][][] m; // 存放最终计算结果
static int[] result; // 存放最大值和最小值 public static void main(String[] args) {
n = 4;
// 我的案例是: + -7 + 4 * 2 * 5
v = new int[] {Integer.MIN_VALUE, -7, 4, 2, 5};
op = new char[] {' ', '+', '+', '*', '*'};
m = new int[n + 1][n + 1][2];
for (int i = 1; i <= n; i++) { // m[i][j][1] 表示起点为i,长度为j的最大值 m[i][1][1] = v[i]; // m[i][j][0] 表示起点为i,长度为j的最小值 m[i][1][0] = v[i];
}
polyMax();
System.out.println("最大值: " + result[0] + "\n最小值: " + result[1]); } /**
* * @param i: 链的起点
* @param s: 断开位置
* @param j: 链的长度
*/
public static void minMax(int i, int s, int j) {
int[] e = new int[n + 1];
// 在op(i+s) 处进行分割
int a = m[i][s][0], // 左半部分最小值 b = m[i][s][1], // 左半部分最大值 r = (i + s - 1) % n + 1, // 取余,防止溢出 c = m[r][j - s][0], // 右半部分最小值 d = m[r][j - s][1]; // 右半部分最大值
if(op[r] == '+') { // 对符号进行判断,加号和乘号的处理方式不同 minf = a + c; maxf = b + d;
} else { // 为乘号 // maxf=max{ac, ad, bc, bd} // minf=min{ac, ad, bc, bd} e[1] = a * c; e[2] = a * d; e[3] = b * c; e[4] = b * d; minf = e[1]; maxf = e[1]; for (int k = 2; k < 5; k++) { // 查找最大最小值 if (minf > e[k]) minf = e[k]; if (maxf < e[k]) maxf = e[k]; }
}
} public static void polyMax() {
for(int j = 2; j <= n; j++) // 总长度遍历 for(int i = 1; i <= n; i++) for(int s = 1; s < j; s++) { // 断开位置 // 求m[i][j][1]和m[i][j][0] minMax(i, s, j); if(m[i][j][0] > minf) m[i][j][0] = minf; if(m[i][j][1] < maxf) m[i][j][1] = maxf; }
result = new int[2];
result[0] = m[1][n][1];
result[1] = m[1][n][0];
for(int i = 1; i <= n; i++) { if (result[0] < m[i][n][1]) result[0] = m[i][n][1]; if (result[1] > m[i][n][0]) result[1] = m[i][n][0];
}
}
}
最大值: 33
最小值: -35
好了,到此结束。欢迎大家关注我😀
文章来源: ruochen.blog.csdn.net,作者:若尘,版权归原作者所有,如需转载,请联系作者。
原文链接:ruochen.blog.csdn.net/article/details/105165505
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)