EfficientNet v2来了 更快、更小、更强

举报
风吹稻花香 发表于 2021/06/04 23:01:25 2021/06/04
【摘要】   本文提出一种训练速度更快、参数量更少的卷积神经网络EfficientNetV2。我们采用了训练感知NAS与缩放技术对训练速度与参数量进行联合优化,NAS的搜索空间采用了新的op(比如Fused-MBConv)进行扩充。实验表明:相比其他SOTA方案,所提EfficientNetV2收敛速度更快,模型更小(6.8x)。 在训练过程中,我们可以通过逐步提升图像大...

 

本文提出一种训练速度更快、参数量更少的卷积神经网络EfficientNetV2。我们采用了训练感知NAS与缩放技术对训练速度与参数量进行联合优化,NAS的搜索空间采用了新的op(比如Fused-MBConv)进行扩充。实验表明:相比其他SOTA方案,所提EfficientNetV2收敛速度更快,模型更小(6.8x)。

在训练过程中,我们可以通过逐步提升图像大小得到加速,但通常会造成性能掉点。为补偿该性能损失,我们提出了一种改进版的渐进学习方式,它自适应的根据图像大小调整正则化因子,比如dropout、数据增广。

受益于渐进学习方式,所提EfficientNetV2在CIFAR/Cars/Flowers数据集上显著优于其他模型;通过在ImageNet21K数据集上预训练,所提模型在ImageNet上达到了87.3%的top1精度,以2.0%精度优于ViT,且训练速度更快(5x-11x)。

 

 

在正式介绍EfficientNetV2之前,我们先简单看一下EfficientNet;然后引出训练感知NAS与缩放,以及所提EfficientNetV2.

 

Understanding Training Efficiency

 

  • Training with very large image sizes is slow。已有研究表明:EfficientNet的大图像尺寸会导致显著的内存占用。由于GPU/TPU的总内存是固定的,我们

文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/jacke121/article/details/117000740

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。