《Python数据挖掘与机器学习实战》—1.5 开发机器学习的步骤
【摘要】 本节书摘来自华章计算机《Python数据挖掘与机器学习实战》一书中的第1章,第1.5节,作者是方巍 。
1.5 开发机器学习的步骤
本书学习和使用机器学习算法开发应用程序,通常遵循以下步骤。
(1)收集数据。
收集所需的数据,方法如:网络爬虫、问卷调查获取的信息、一些设备发送过来的数据,以及从物联网设备获取的数据等。
(2)准备输入数据。
得到数据之后,要确保得到的数据格式符合要求,如某些算法要求特征值需要使用特定的格式。
(3)分析输入的数据。
查看输入的数据是否有明显的异常值,如某些数据点和数据集中的其他值存在明显的差异。通过一维、二维或者三维图形化展示数据是个不错的方法,但是得到的数据特征值都不会低于三个,无法一次图形化展示所有特征。可以通过数据的提炼,压缩多维特征至二维或者一维。
(4)训练算法。
机器学习算法从这一步才算真正开始。需要考虑算法是使用监督学习算法还是无监督学习算法。如果使用无监督学习算法,由于不存在目标变量值,因而也不需要训练算法,所有与算法相关的内容都在第(5)步。
(5)测试算法。
这一步将实际使用第(4)步机器学习得到的知识信息。为了评估算法,必须测试算法工作的效果。对于监督学习,必须已知用于评估算法的目标变量值;对于无监督学习,也必须通过其他的评测手段来检测算法的成功率。如果不满意预测结果,则返回至第(4)步。
(6)使用算法。
这一步是将机器学习算法转化为应用程序,执行实际任务。
开发机器学习应用程序的步骤如图1-2所示。
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)