进阶指南:在 DWS 中利用 PL/Python 解锁数据库无限可能
前言:
本功能适用版本:9.1.1.200及以上,仅支持混合云、纯软部署形态,其他形态陆续规划,敬请期待~
为什么选择 PL/Python?
在传统的 SQL 处理中,面对复杂的数学运算、文本解析或机器学习推理时,SQL 语句往往变得臃肿且难以维护。DWS 提供的 PL/Python 扩展,将 Python 强大的生态系统直接引入数据库内部。
- 逻辑下沉:直接在数据存储处进行逻辑处理,减少数据在网络和应用层之间的频繁传输。
- 生态复用:直接使用 Pandas、Numpy 等成熟库,无需重复造轮子。
- 开发效率:相比存储过程(PL/pgSQL),Python 的语法更简洁,对于熟悉 AI 和大数据开发的工程师几乎零门槛。
核心原理与架构:什么是 Fenced 模式?
在 DWS 中,Python UDF 函数强制要求使用 Fenced 模式。
补充说明:
- 隔离安全性:Fenced 模式意味着 Python 解释器运行在数据库核心进程之外的独立守护进程中。即便 Python 代码因为逻辑问题(如内存溢出或调用了不稳定的第三方库)崩溃,也不会影响数据库内核的稳定性。
- 资源控制:可以更好地监控和限制 Python 进程占用的 CPU 和内存资源。
语法深度解析
参数映射关系
DWS 会自动完成 SQL 类型到 Python 类型的转换。
INT/BIGINTintTEXT/VARCHARstrBOOLboolARRAYlist
空值处理 (STRICT 关键字)
在 add_int_arr 示例中用到了 STRICT:
- STRICT:意味着如果输入参数中有任何一个为
NULL,函数将直接返回NULL,而不进入 Python 内部逻辑。这能有效避免 Python 抛出TypeError。
python基本语法规则
Python UDF函数必须严格遵循Python基本语法规则,例如:
- 使用缩进表示代码块,默认每层缩进4个空格;
- 以冒号开始新代码块,if/for/while/def/class/try/with 等后面跟冒号
- 区分大小写:var与VAR表示不同的变量
- 合法标识符:变量名开头为字母/数字/下划线,不能以数字开头
实战场景:从基础到高阶
创建示例表temp并插入数据。
CREATE TABLE temp (a INT ,b INT);
INSERT INTO temp VALUES (1,2),(2,3),(3,4),(4,5),(5,6);
场景 A:基础数值比较 (pymax 示例)
CREATE OR REPLACE FUNCTION pymax(a INT, b INT)
RETURNS INT
LANGUAGE plpython3u FENCED
AS $$
if a > b:
return a;
else:
return b;
$$;
使用函数pymax比较表temp的a列和b列并返回最大值。
SELECT pymax(a, b) FROM temp order by 1;
pymax
-------
2
3
4
5
6
(5 rows)
场景 B:科学计算与向量化处理
DWS-PythonUDF通过内置支持的 Numpy、scipy等库, 可以处理复杂的线性代数运算。
| 库名 | 功能 |
|---|---|
| numpy | 提供了一个强大的N维数组对象ndarray,以及许多用于数组操作、数学函数、随机数生成等的工具。 |
| pandas | 用于数据操作和分析。它提供了高效、灵活且易于使用的数据结构,尤其适合处理和分析表格数据(如电子表格、SQL 数据、CSV 文件等)。 |
| scipy | 提供了基于NumPy的高效数值算法和函数,涵盖了优化、积分、插值、线性代数、统计等多个领域。 |
| scikit-learn | 提供了简单高效的工具用于数据挖掘和机器学习,支持分类、回归、聚类、降维、模型选择等任务。 |
- 创建Python UDF函数add_int_arr使用第三方库numpy,计算a数组和b数组中第一个元素相加的和
CREATE OR REPLACE FUNCTION add_int_arr(a int8[], b int2[])
RETURNS int8[] AS $$
import numpy
return [a[0]+b[0]]
$$ LANGUAGE plpython3u strict shippable;
您可以尝试查看 pg_proc 表来确认你的函数是否已经成功注册,并观察 fencedmode 字段是否为 t,sql见附录
- 使用Python UDF函数add_int_arr,计算出数组第一个元素11和2的和为13。
使用Python UDF函数add_int_arr,计算出数组第一个元素11和2的和为13。
SELECT add_int_arr(ARRAY[11,2,3,4],ARRAY[2,4,5,5]);
add_int_arr
-------------
{13}
(1 row)
场景 C:大模型特征算子
这是 PL/Python 最具应用价值的场景,大模型特征算子以extension形式封装为文件置于DWS系统,通过CREATE EXTENSION命令创建,大模型直接调用封装好的Python UDF函数。(该功能仅9.1.1.200及以上集群版本支持)
-
- 用户创建EXTENSION,加载大模型特征算子bq_ops。创建完成后,Python UDF函数自动完成加载,大模型特征算子函数及功能见附录。函数类型均为pythonUDF,返回值类型均为double,反映当前信号的某些特征值。
CREATE EXTENSION bq_ops;
- 用户创建EXTENSION,加载大模型特征算子bq_ops。创建完成后,Python UDF函数自动完成加载,大模型特征算子函数及功能见附录。函数类型均为pythonUDF,返回值类型均为double,反映当前信号的某些特征值。
-
- 创建表bq_col_table,device_code表示当前设备号,measuring_point_code表示测量点编码,date_time表示信号采集日期,high_array列表示当前接收的信号
CREATE TABLE bq_col_table(
device_code varchar,
measuring_point_code text,
date_time timestamp with time zone,
high_array double precision[]
)
with (orientation=column, enable_hstore_opt=true);
每过1小时采集10秒钟信号,假设当前入库时数据如下。
INSERT INTO bq_col_table VALUES
('10098819','3a138131-344a-af96-9e9d-da049656d905','2024-07-13 17:59:59+08:00','{0.527995824813842,-0.62188184261322,-0.332374721765518,-0.139671847224235,-0.308928370475769,-0.165734529495239,0.137558653950691,-0.923967480659484,-0.398990541696548,0.620271801948547,0.366085141897201,-0.873452186584472,-1.00577819347381,-0.581831872463226,0.0675214752554893,0.789226412773132,-0.643114387989044,-0.779465496540069,0.913703441619873,1.33372521400451,-0.0830182060599327,0.621579945087432,1.48476803302764}');
-
- 调用算子get_rms()计算信号均方根值,当前样本信号的振动信号能量强度。上述样例数据结果为:
SELECT device_code, measuring_point_code, date_time, get_rms(high_array) FROM bq_col_table;
device_code | measuring_point_code | date_time | get_rms
-------------+--------------------------------------+------------------------+------------------
10098819 | 3a138131-344a-af96-9e9d-da049656d905 | 2024-07-13 17:59:59+08 | .705324261533061
(1 row)
-
- 重复上述步骤,采集10天信号数据为样本,设定rms的正常取值区间,假设为[0.5, 0.8]。
若出现异常信号入库,其rms值约为1.43
- 重复上述步骤,采集10天信号数据为样本,设定rms的正常取值区间,假设为[0.5, 0.8]。
INSERT INTO bq_col_table VALUES
('10098828','3a138131-344a-af96-9e9d-da049656d905','2024-07-13 07:59:59+08:00','{0.544054210186004,-0.769003570079803,-1.79972970485687,0.659896433353424,1.65061652660369,-0.221043065190315,-1.83933162689208,-2.58152985572814,-0.627029538154602,2.1537218093872,2.14685225486755,-0.0429693721234798,-1.21243667602539,-1.02749335765838,-0.526543200016021,-0.0408141687512397,1.96406400203704,2.1080584526062,0.257277429103851,-1.36532151699066,-2.31293749809265,-0.803890943527221,1.13646578788757}');
SELECT device_code, measuring_point_code, date_time, get_rms(high_array) FROM bq_col_table;
device_code | measuring_point_code | date_time | get_rms
-------------+--------------------------------------+------------------------+------------------
10098819 | 3a138131-344a-af96-9e9d-da049656d905 | 2024-07-13 17:59:59+08 | .705324261533061
……
10098828 | 3a138131-344a-af96-9e9d-da049656d905 | 2024-07-13 07:59:59+08 | 1.43480152874657
-
- 异常值大于rms的正常取值区间[0.5, 0.8],据此,工程师将根据其设备号与入库时间排查此异常场景。
PL/Python 使用限制与避坑指南
- 版本要求:必须在 9.1.1.200 及以上集群版本使用。
- Fenced 模式强制要求:确保在定义时加上
FENCED关键字。 - 网络开销:由于 Fenced 模式涉及进程间通信(IPC),对于执行时间极短(纳秒级)的微型函数,频繁调用可能会产生一定开销。建议将复杂逻辑整合在单个 UDF 中处理批量数据。
总结
PL/Python 为 DWS 注入了处理非结构化数据和高级算法的能力。它不仅是一个语法扩展,更是将“数据仓库”升级为“算法中心”的关键桥梁。无论你是想做智能风控、时序分析,还是简单的复杂字符串清洗,PL/Python 都是你的首选利器。
附录
- 1.查看pymax函数
SELECT * FROM pg_proc where proname='pymax';
-[ RECORD 1 ]----+--------------
proname | pymax
pronamespace | 2200
proowner | 10
prolang | 16616
procost | 100
prorows | 0
provariadic | 0
protransform | -
proisagg | f
proiswindow | f
prosecdef | f
proleakproof | f
proisstrict | f
proretset | f
provolatile | v
pronargs | 2
pronargdefaults | 0
prorettype | 23
proargtypes | 23 23
proallargtypes |
proargmodes |
proargnames | {a,b}
proargdefaults |
prosrc |
| if a > b:
| return a;
| else:
| return b;
|
probin |
proconfig |
proacl |
prodefaultargpos |
fencedmode | t
proshippable | f
propackage | f
prokind | f
- 2.大模型相关算子列表
表1 函数列表 - 基础时域特征指标
| 函数名 | 参数 | 算子功能 |
|---|---|---|
| get_mean_square | (signal double precision[]) | 均方值:反映振动信号在时间域内的平均能量水平 |
| get_rms | (signal double precision[]) | 均方根值(有效值):一般表征振动信号能量或强度 |
| get_var | (signal double precision[]) | 方差值:反映信号幅值相对于其平均值的离散程度 |
| get_pk_pk | (signal double precision[]) | 峰峰值:表征振动信号幅值波动范围的重要指标 |
| get_shape_factor | (signal double precision[]) | 波形指标:RMS与绝对平均值的比值,反映波形与正弦波的偏离程度 |
| get_crest | (signal double precision[]) | 峰值因数:峰值与有效值的比例,描述信号的冲击特性 |
| get_impulse | (signal double precision[]) | 脉冲因数:峰值与平均值的比例,评估瞬时能量集中程度 |
| get_clearance | (signal double precision[]) | 裕度:峰值与方根幅值比值,对严重局部故障产生的剧烈冲击敏感 |
| get_skewness | (signal double precision[]) | 偏斜度:反映信号幅值分布相对于平均值的偏斜方向和程度 |
| get_kurt | (signal double precision[]) | 峭度:反映幅值分布尖锐程度,常用于检测异常冲击事件 |
| get_kurt_aver | (signal double precision[]) | 平均峭度:多组信号峭度的平均值,评估长期冲击特性变化 |
| get_gini | (signal double precision[]) | 基尼指数:表征信号能量分布均匀性或集中程度 |
| get_env_rms | (signal double precision[]) | 包络谱均方根:反映信号中调制成分(如故障特征频率)的强度 |
| get_ehr | (signal double precision[]) | 谐波率:评估信号中谐波成分强度,反映周期性或非线性特征 |
- 频域及声学特征指标
| 函数名 | 参数 | 算子功能 |
|---|---|---|
| get_sharpness | (signal[], fs int) | 尖锐度:反映中高频成分多少,数值越大听起来越尖锐 |
| get_roughness | (signal[], fs int) | 粗糙度:感知粗糙程度指标,描述声音时间上的快速波动 |
| get_spec_ctrd | (signal[], fs int) | 重心频率:信号功率谱的质量中心,反映能量集中位置 |
| get_spec_ms | (signal[],fs int) | 均方频率:各频率分量平方的加权平均,反映能量频率分布 |
| get_spec_rms | (signal[],fs int) | 均方根频率:描述信号频谱的总体分布情况 |
| get_spec_var_ctrd | (signal[], fs int) | 频谱方差:反映信号频率成分的分散程度 |
| get_spec_std_ctrd | (signal[], fs int) | 频谱标准差:频率方差的平方根,描述频谱分布离散程度 |
| get_pse | (signal[], fs int) | 谱熵:基于信息熵概念,表征频域能量分布的复杂度或无序度 |
| get_mpf | (signal[], fs int) | 转速:单位时间内的旋转次数,通常以 RPM 表示 |
- 带通滤波分段指标 (BPF)
| 函数名 | 频率范围 | 计算指标 | 描述 |
|---|---|---|---|
| get_bpf_0_500_rms | 0-500Hz | 有效值(RMS) | 描述低频信号的能量强度 |
| get_bpf_500_2000_rms | 500-2000Hz | 有效值(RMS) | 描述中频信号的能量强度 |
| get_bpf_2000_inf_rms | 2000Hz-fs/2 | 有效值(RMS) | 描述高频信号的能量强度 |
| get_bpf_0_500_kurt | 0-500Hz | 峭度 | 描述低频信号中冲击性的强弱 |
| get_bpf_500_2000_kurt | 500-2000Hz | 峭度 | 描述中频信号中冲击性的强弱 |
| get_bpf_2000_inf_kurt | 2000Hz-fs/2 | 峭度 | 描述高频信号中冲击性的强弱 |
| get_bpf_0_500_ehr | 0-500Hz | 谐波率 | 描述低频谐噪比 |
| get_bpf_500_2000_ehr | 500-2000Hz | 谐波率 | 描述中频谐噪比 |
| get_bpf_2000_inf_ehr | 2000Hz-fs/2 | 谐波率 | 描述高频谐噪比 |
- 点赞
- 收藏
- 关注作者
评论(0)