燃煤发电厂智能监控系统(四):系统集成与数据分析平台
【摘要】 系统集成与数据分析是智能监控系统的核心,负责整合各子系统数据,提供统一的监控界面和智能分析功能。本文将详细介绍如何构建一个完整的数据采集、存储、分析和可视化平台。 1 系统集成架构 1.1 整体架构设计智能监控系统采用分层架构,包括数据采集层、数据处理层、业务逻辑层和展示层:数据采集层:通过Modbus、OPC UA等协议从各种传感器和控制器采集实时数据。数据处理层:对原始数据进行清洗、验证...
系统集成与数据分析是智能监控系统的核心,负责整合各子系统数据,提供统一的监控界面和智能分析功能。本文将详细介绍如何构建一个完整的数据采集、存储、分析和可视化平台。
1 系统集成架构
1.1 整体架构设计
智能监控系统采用分层架构,包括数据采集层、数据处理层、业务逻辑层和展示层:
数据采集层:通过Modbus、OPC UA等协议从各种传感器和控制器采集实时数据。
数据处理层:对原始数据进行清洗、验证、转换和存储,支持实时流处理和批处理。
业务逻辑层:实现各种业务功能,包括监控、控制、报警、分析等。
展示层:提供Web界面、移动端应用和大屏展示,支持实时监控和历史数据查询。
1.2 数据采集服务
/**
* 统一数据采集服务
* 负责从各个子系统采集数据并进行统一处理
*/
@Service
@Slf4j
public class DataCollectionService {
@Autowired
private ModbusClient modbusClient;
@Autowired
private OpcUaClient opcUaClient;
@Autowired
private InfluxDBTemplate influxDBTemplate;
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@Autowired
private KafkaTemplate<String, Object> kafkaTemplate;
@Autowired
private DataValidationService validationService;
@Autowired
private AlarmService alarmService;
// 数据采集配置
private final Map<String, DataPointConfig> dataPointConfigs = new ConcurrentHashMap<>();
// 数据缓存
private final Map<String, SensorData> dataCache = new ConcurrentHashMap<>();
@PostConstruct
public void initializeDataPoints() {
// 初始化数据点配置
loadDataPointConfigurations();
// 启动数据采集任务
startDataCollectionTasks();
}
/**
* 主数据采集任务
* 每秒执行一次,采集所有实时数据
*/
@Scheduled(fixedRate = 1000)
public void collectRealTimeData() {
try {
List<CompletableFuture<Void>> futures = new ArrayList<>();
// 并行采集各系统数据
futures.add(CompletableFuture.runAsync(this::collectCombustionSystemData));
futures.add(CompletableFuture.runAsync(this::collectSteamWaterSystemData));
futures.add(CompletableFuture.runAsync(this::collectGeneratorData));
futures.add(CompletableFuture.runAsync(this::collectCoolingSystemData));
futures.add(CompletableFuture.runAsync(this::collectEnvironmentalData));
// 等待所有采集任务完成
CompletableFuture.allOf(futures.toArray(new CompletableFuture[0]))
.get(5, TimeUnit.SECONDS);
// 数据处理和存储
processAndStoreData();
} catch (Exception e) {
log.error("数据采集异常", e);
alarmService.sendAlarm("数据采集系统异常: " + e.getMessage(), "HIGH");
}
}
/**
* 采集燃烧系统数据
*/
private void collectCombustionSystemData() {
try {
Map<String, Object> data = new HashMap<>();
// 煤粉制备系统
data.put("coal_feed_rate", modbusClient.readHoldingRegister(1001) / 10.0);
data.put("mill_speed", modbusClient.readHoldingRegister(1002));
data.put("mill_current", modbusClient.readHoldingRegister(1003) / 10.0);
data.put("coal_fineness", modbusClient.readHoldingRegister(1004) / 10.0);
// 炉膛燃烧系统
data.put("furnace_temp_1", modbusClient.readHoldingRegister(1011) / 10.0);
data.put("furnace_temp_2", modbusClient.readHoldingRegister(1012) / 10.0);
data.put("furnace_temp_3", modbusClient.readHoldingRegister(1013) / 10.0);
data.put("furnace_temp_4", modbusClient.readHoldingRegister(1014) / 10.0);
data.put("oxygen_content", modbusClient.readHoldingRegister(1015) / 100.0);
data.put("co_content", modbusClient.readHoldingRegister(1016));
data.put("nox_content", modbusClient.readHoldingRegister(1017));
data.put("so2_content", modbusClient.readHoldingRegister(1018));
// 风烟系统
data.put("primary_air_flow", modbusClient.readHoldingRegister(1021) / 10.0);
data.put("secondary_air_flow", modbusClient.readHoldingRegister(1022) / 10.0);
data.put("flue_gas_flow", modbusClient.readHoldingRegister(1023) / 10.0);
data.put("draft_pressure", modbusClient.readHoldingRegister(1024) / 100.0);
// 数据验证和存储
SensorData sensorData = new SensorData("COMBUSTION_SYSTEM", data, LocalDateTime.now());
if (validationService.validateData(sensorData)) {
dataCache.put("COMBUSTION_SYSTEM", sensorData);
publishDataToKafka("combustion-data", sensorData);
}
} catch (Exception e) {
log.error("采集燃烧系统数据失败", e);
}
}
/**
* 采集汽水系统数据
*/
private void collectSteamWaterSystemData() {
try {
Map<String, Object> data = new HashMap<>();
// 汽包参数
data.put("drum_water_level", modbusClient.readHoldingRegister(2001) / 100.0);
data.put("drum_pressure", modbusClient.readHoldingRegister(2002) / 100.0);
data.put("drum_temperature", modbusClient.readHoldingRegister(2003) / 10.0);
// 蒸汽参数
data.put("steam_temperature", modbusClient.readHoldingRegister(2011) / 10.0);
data.put("steam_pressure", modbusClient.readHoldingRegister(2012) / 100.0);
data.put("steam_flow", modbusClient.readHoldingRegister(2013) / 10.0);
data.put("steam_quality", modbusClient.readHoldingRegister(2014) / 100.0);
// 给水系统
data.put("feedwater_flow", modbusClient.readHoldingRegister(2021) / 10.0);
data.put("feedwater_temperature", modbusClient.readHoldingRegister(2022) / 10.0);
data.put("feedwater_pressure", modbusClient.readHoldingRegister(2023) / 100.0);
data.put("feedwater_valve_opening", modbusClient.readHoldingRegister(2024));
// 过热器和再热器
data.put("superheater_outlet_temp", modbusClient.readHoldingRegister(2031) / 10.0);
data.put("reheater_outlet_temp", modbusClient.readHoldingRegister(2032) / 10.0);
data.put("desuperheater_spray_flow", modbusClient.readHoldingRegister(2033) / 10.0);
SensorData sensorData = new SensorData("STEAM_WATER_SYSTEM", data, LocalDateTime.now());
if (validationService.validateData(sensorData)) {
dataCache.put("STEAM_WATER_SYSTEM", sensorData);
publishDataToKafka("steam-water-data", sensorData);
}
} catch (Exception e) {
log.error("采集汽水系统数据失败", e);
}
}
/**
* 采集发电机组数据
*/
private void collectGeneratorData() {
try {
Map<String, Object> data = new HashMap<>();
// 汽轮机参数
data.put("turbine_speed", modbusClient.readHoldingRegister(3001));
data.put("turbine_vibration_1", modbusClient.readHoldingRegister(3002) / 100.0);
data.put("turbine_vibration_2", modbusClient.readHoldingRegister(3003) / 100.0);
data.put("turbine_bearing_temp_1", modbusClient.readHoldingRegister(3004) / 10.0);
data.put("turbine_bearing_temp_2", modbusClient.readHoldingRegister(3005) / 10.0);
data.put("turbine_efficiency", modbusClient.readHoldingRegister(3006) / 100.0);
// 发电机参数
data.put("generator_speed", modbusClient.readHoldingRegister(3011));
data.put("generator_voltage", modbusClient.readHoldingRegister(3012) / 10.0);
data.put("generator_current", modbusClient.readHoldingRegister(3013) / 10.0);
data.put("generator_frequency", modbusClient.readHoldingRegister(3014) / 100.0);
data.put("generator_power_factor", modbusClient.readHoldingRegister(3015) / 1000.0);
data.put("active_power", modbusClient.readHoldingRegister(3016) / 10.0);
data.put("reactive_power", modbusClient.readHoldingRegister(3017) / 10.0);
// 励磁系统
data.put("excitation_voltage", modbusClient.readHoldingRegister(3021) / 10.0);
data.put("excitation_current", modbusClient.readHoldingRegister(3022) / 10.0);
data.put("field_voltage", modbusClient.readHoldingRegister(3023) / 10.0);
SensorData sensorData = new SensorData("GENERATOR_SYSTEM", data, LocalDateTime.now());
if (validationService.validateData(sensorData)) {
dataCache.put("GENERATOR_SYSTEM", sensorData);
publishDataToKafka("generator-data", sensorData);
}
} catch (Exception e) {
log.error("采集发电机组数据失败", e);
}
}
/**
* 采集冷却系统数据
*/
private void collectCoolingSystemData() {
try {
Map<String, Object> data = new HashMap<>();
// 凝汽器参数
data.put("condenser_pressure", modbusClient.readHoldingRegister(4001) / 100.0);
data.put("condenser_vacuum", modbusClient.readHoldingRegister(4002) / 100.0);
data.put("condenser_inlet_temp", modbusClient.readHoldingRegister(4003) / 10.0);
data.put("condenser_outlet_temp", modbusClient.readHoldingRegister(4004) / 10.0);
// 冷却塔参数
data.put("cooling_tower_inlet_temp", modbusClient.readHoldingRegister(4011) / 10.0);
data.put("cooling_tower_outlet_temp", modbusClient.readHoldingRegister(4012) / 10.0);
data.put("cooling_tower_water_level", modbusClient.readHoldingRegister(4013) / 10.0);
data.put("cooling_tower_makeup_flow", modbusClient.readHoldingRegister(4014) / 10.0);
// 循环水系统
data.put("circulating_water_flow", modbusClient.readHoldingRegister(4021) / 10.0);
data.put("circulating_water_pressure", modbusClient.readHoldingRegister(4022) / 100.0);
data.put("circulating_water_temp", modbusClient.readHoldingRegister(4023) / 10.0);
// 风机和水泵状态
for (int i = 0; i < 4; i++) {
data.put("fan_" + (i+1) + "_speed", modbusClient.readHoldingRegister(4031 + i));
data.put("fan_" + (i+1) + "_current", modbusClient.readHoldingRegister(4041 + i) / 10.0);
}
for (int i = 0; i < 3; i++) {
data.put("pump_" + (i+1) + "_speed", modbusClient.readHoldingRegister(4051 + i));
data.put("pump_" + (i+1) + "_current", modbusClient.readHoldingRegister(4061 + i) / 10.0);
}
SensorData sensorData = new SensorData("COOLING_SYSTEM", data, LocalDateTime.now());
if (validationService.validateData(sensorData)) {
dataCache.put("COOLING_SYSTEM", sensorData);
publishDataToKafka("cooling-data", sensorData);
}
} catch (Exception e) {
log.error("采集冷却系统数据失败", e);
}
}
/**
* 采集环境数据
*/
private void collectEnvironmentalData() {
try {
Map<String, Object> data = new HashMap<>();
// 气象参数
data.put("ambient_temperature", modbusClient.readHoldingRegister(5001) / 10.0);
data.put("humidity", modbusClient.readHoldingRegister(5002) / 10.0);
data.put("wind_speed", modbusClient.readHoldingRegister(5003) / 10.0);
data.put("wind_direction", modbusClient.readHoldingRegister(5004));
data.put("atmospheric_pressure", modbusClient.readHoldingRegister(5005) / 100.0);
// 环保参数
data.put("stack_so2", modbusClient.readHoldingRegister(5011));
data.put("stack_nox", modbusClient.readHoldingRegister(5012));
data.put("stack_dust", modbusClient.readHoldingRegister(5013) / 10.0);
data.put("stack_temperature", modbusClient.readHoldingRegister(5014) / 10.0);
data.put("stack_flow", modbusClient.readHoldingRegister(5015) / 10.0);
SensorData sensorData = new SensorData("ENVIRONMENTAL_SYSTEM", data, LocalDateTime.now());
if (validationService.validateData(sensorData)) {
dataCache.put("ENVIRONMENTAL_SYSTEM", sensorData);
publishDataToKafka("environmental-data", sensorData);
}
} catch (Exception e) {
log.error("采集环境数据失败", e);
}
}
/**
* 数据处理和存储
*/
private void processAndStoreData() {
try {
// 实时数据存储到Redis
for (Map.Entry<String, SensorData> entry : dataCache.entrySet()) {
String key = "realtime:" + entry.getKey();
redisTemplate.opsForValue().set(key, entry.getValue(), Duration.ofMinutes(5));
}
// 历史数据存储到InfluxDB
List<Point> points = new ArrayList<>();
for (SensorData data : dataCache.values()) {
Point.Builder pointBuilder = Point.measurement(data.getSystemName())
.time(data.getTimestamp().toInstant(ZoneOffset.UTC), WritePrecision.MS);
for (Map.Entry<String, Object> field : data.getData().entrySet()) {
if (field.getValue() instanceof Number) {
pointBuilder.addField(field.getKey(), ((Number) field.getValue()).doubleValue());
} else {
pointBuilder.addField(field.getKey(), field.getValue().toString());
}
}
points.add(pointBuilder.build());
}
influxDBTemplate.writePoints(points);
// 计算系统KPI
calculateAndStoreKPIs();
} catch (Exception e) {
log.error("数据处理和存储失败", e);
}
}
/**
* 发布数据到Kafka
*/
private void publishDataToKafka(String topic, SensorData data) {
try {
kafkaTemplate.send(topic, data);
} catch (Exception e) {
log.error("发布数据到Kafka失败: topic={}", topic, e);
}
}
/**
* 计算和存储KPI指标
*/
private void calculateAndStoreKPIs() {
try {
Map<String, Double> kpis = new HashMap<>();
// 整体效率计算
SensorData combustionData = dataCache.get("COMBUSTION_SYSTEM");
SensorData steamData = dataCache.get("STEAM_WATER_SYSTEM");
SensorData generatorData = dataCache.get("GENERATOR_SYSTEM");
if (combustionData != null && steamData != null && generatorData != null) {
// 发电效率 = 发电功率 / 燃料热值
double activePower = (Double) generatorData.getData().get("active_power");
double coalFeedRate = (Double) combustionData.getData().get("coal_feed_rate");
double efficiency = activePower / (coalFeedRate * 29.3) * 100; // 假设煤热值29.3MJ/kg
kpis.put("overall_efficiency", efficiency);
// 汽轮机效率
double steamFlow = (Double) steamData.getData().get("steam_flow");
double steamTemp = (Double) steamData.getData().get("steam_temperature");
double turbineEfficiency = calculateTurbineEfficiency(activePower, steamFlow, steamTemp);
kpis.put("turbine_efficiency", turbineEfficiency);
// 锅炉效率
double furnaceTemp = (Double) combustionData.getData().get("furnace_temp_1");
double oxygenContent = (Double) combustionData.getData().get("oxygen_content");
double boilerEfficiency = calculateBoilerEfficiency(furnaceTemp, oxygenContent);
kpis.put("boiler_efficiency", boilerEfficiency);
}
// 环保指标
SensorData envData = dataCache.get("ENVIRONMENTAL_SYSTEM");
if (envData != null) {
double so2Emission = (Double) envData.getData().get("stack_so2");
double noxEmission = (Double) envData.getData().get("stack_nox");
double dustEmission = (Double) envData.getData().get("stack_dust");
kpis.put("so2_emission_rate", so2Emission);
kpis.put("nox_emission_rate", noxEmission);
kpis.put("dust_emission_rate", dustEmission);
}
// 存储KPI到Redis和InfluxDB
redisTemplate.opsForValue().set("kpis:current", kpis, Duration.ofMinutes(5));
Point kpiPoint = Point.measurement("system_kpis")
.time(Instant.now(), WritePrecision.MS);
for (Map.Entry<String, Double> kpi : kpis.entrySet()) {
kpiPoint.addField(kpi.getKey(), kpi.getValue());
}
influxDBTemplate.writePoint(kpiPoint);
} catch (Exception e) {
log.error("计算KPI失败", e);
}
}
// 辅助方法
private void loadDataPointConfigurations() {
// 从配置文件或数据库加载数据点配置
// 这里简化处理
}
private void startDataCollectionTasks() {
// 启动额外的数据采集任务
// 例如慢速采集任务、批量数据处理等
}
private double calculateTurbineEfficiency(double power, double steamFlow, double steamTemp) {
// 汽轮机效率计算公式(简化)
double theoreticalPower = steamFlow * (steamTemp - 30) * 0.5; // 简化计算
return power / theoreticalPower * 100;
}
private double calculateBoilerEfficiency(double furnaceTemp, double oxygenContent) {
// 锅炉效率计算公式(简化)
double baseEfficiency = 88.0;
double tempFactor = (furnaceTemp - 1200) / 1200 * 5; // 温度影响
double oxygenFactor = (oxygenContent - 3) * 2; // 氧含量影响
return baseEfficiency + tempFactor - oxygenFactor;
}
}
2 智能报警系统
2.1 多级报警机制
/**
* 智能报警系统
* 提供多级报警、智能分析和预测性报警功能
*/
@Service
@Slf4j
public class IntelligentAlarmSystem {
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@Autowired
private InfluxDBTemplate influxDBTemplate;
@Autowired
private NotificationService notificationService;
@Autowired
private MachineLearningService mlService;
@Autowired
private RuleEngine ruleEngine;
// 报警级别定义
public enum AlarmLevel {
INFO(1, "信息", "#2196F3"),
LOW(2, "低级", "#4CAF50"),
MEDIUM(3, "中级", "#FF9800"),
HIGH(4, "高级", "#F44336"),
CRITICAL(5, "紧急", "#9C27B0");
private final int priority;
private final String description;
private final String color;
AlarmLevel(int priority, String description, String color) {
this.priority = priority;
this.description = description;
this.color = color;
}
// getters...
}
// 报警状态
public enum AlarmStatus {
ACTIVE, // 活动
ACKNOWLEDGED, // 已确认
RESOLVED, // 已解决
SUPPRESSED // 已抑制
}
/**
* 实时报警检测
* 每5秒执行一次
*/
@Scheduled(fixedRate = 5000)
public void performRealTimeAlarmDetection() {
try {
// 获取实时数据
Map<String, SensorData> realtimeData = getCurrentRealtimeData();
// 并行执行各种报警检测
List<CompletableFuture<List<Alarm>>> futures = Arrays.asList(
CompletableFuture.supplyAsync(() -> detectThresholdAlarms(realtimeData)),
CompletableFuture.supplyAsync(() -> detectTrendAlarms(realtimeData)),
CompletableFuture.supplyAsync(() -> detectAnomalyAlarms(realtimeData)),
CompletableFuture.supplyAsync(() -> detectCorrelationAlarms(realtimeData)),
CompletableFuture.supplyAsync(() -> detectPredictiveAlarms(realtimeData))
);
// 收集所有报警
List<Alarm> allAlarms = futures.stream()
.map(CompletableFuture::join)
.flatMap(List::stream)
.collect(Collectors.toList());
// 处理报警
processAlarms(allAlarms);
} catch (Exception e) {
log.error("实时报警检测异常", e);
}
}
/**
* 阈值报警检测
*/
private List<Alarm> detectThresholdAlarms(Map<String, SensorData> data) {
List<Alarm> alarms = new ArrayList<>();
try {
for (Map.Entry<String, SensorData> entry : data.entrySet()) {
String systemName = entry.getKey();
SensorData sensorData = entry.getValue();
for (Map.Entry<String, Object> dataPoint : sensorData.getData().entrySet()) {
String paramName = dataPoint.getKey();
Object value = dataPoint.getValue();
if (value instanceof Number) {
double numValue = ((Number) value).doubleValue();
// 获取阈值配置
ThresholdConfig config = getThresholdConfig(systemName, paramName);
if (config != null) {
Alarm alarm = checkThreshold(systemName, paramName, numValue, config);
if (alarm != null) {
alarms.add(alarm);
}
}
}
}
}
} catch (Exception e) {
log.error("阈值报警检测失败", e);
}
return alarms;
}
/**
* 趋势报警检测
*/
private List<Alarm> detectTrendAlarms(Map<String, SensorData> data) {
List<Alarm> alarms = new ArrayList<>();
try {
for (Map.Entry<String, SensorData> entry : data.entrySet()) {
String systemName = entry.getKey();
SensorData currentData = entry.getValue();
// 获取历史数据进行趋势分析
List<SensorData> historicalData = getHistoricalData(systemName, Duration.ofMinutes(30));
for (String paramName : currentData.getData().keySet()) {
TrendAnalysisResult trend = analyzeTrend(historicalData, paramName);
if (trend.isAbnormal()) {
Alarm alarm = createTrendAlarm(systemName, paramName, trend);
alarms.add(alarm);
}
}
}
} catch (Exception e) {
log.error("趋势报警检测失败", e);
}
return alarms;
}
/**
* 异常检测报警
* 使用机器学习模型检测异常
*/
private List<Alarm> detectAnomalyAlarms(Map<String, SensorData> data) {
List<Alarm> alarms = new ArrayList<>();
try {
for (Map.Entry<String, SensorData> entry : data.entrySet()) {
String systemName = entry.getKey();
SensorData sensorData = entry.getValue();
// 使用机器学习模型检测异常
AnomalyDetectionResult result = mlService.detectAnomalies(systemName, sensorData);
if (result.hasAnomalies()) {
for (AnomalyPoint anomaly : result.getAnomalies()) {
Alarm alarm = createAnomalyAlarm(systemName, anomaly);
alarms.add(alarm);
}
}
}
} catch (Exception e) {
log.error("异常检测报警失败", e);
}
return alarms;
}
/**
* 关联性报警检测
* 检测多个参数之间的异常关联
*/
private List<Alarm> detectCorrelationAlarms(Map<String, SensorData> data) {
List<Alarm> alarms = new ArrayList<>();
try {
// 检测燃烧系统与汽水系统的关联
SensorData combustionData = data.get("COMBUSTION_SYSTEM");
SensorData steamData = data.get("STEAM_WATER_SYSTEM");
if (combustionData != null && steamData != null) {
// 检查煤粉流量与蒸汽流量的关联
double coalFeedRate = (Double) combustionData.getData().get("coal_feed_rate");
double steamFlow = (Double) steamData.getData().get("steam_flow");
double expectedSteamFlow = coalFeedRate * 8.5; // 经验公式
double deviation = Math.abs(steamFlow - expectedSteamFlow) / expectedSteamFlow;
if (deviation > 0.15) { // 偏差超过15%
Alarm alarm = new Alarm();
alarm.setId(UUID.randomUUID().toString());
alarm.setSystemName("CORRELATION_ANALYSIS");
alarm.setParameterName("coal_steam_correlation");
alarm.setLevel(AlarmLevel.MEDIUM);
alarm.setMessage(String.format("煤粉流量与蒸汽流量关联异常,偏差: %.1f%%", deviation * 100));
alarm.setTimestamp(LocalDateTime.now());
alarm.setStatus(AlarmStatus.ACTIVE);
alarms.add(alarm);
}
}
// 检测发电机与冷却系统的关联
SensorData generatorData = data.get("GENERATOR_SYSTEM");
SensorData coolingData = data.get("COOLING_SYSTEM");
if (generatorData != null && coolingData != null) {
double activePower = (Double) generatorData.getData().get("active_power");
double condenserPressure = (Double) coolingData.getData().get("condenser_pressure");
// 负荷与凝汽器压力的关联检查
double expectedPressure = 3.5 + activePower / 600 * 1.5; // 经验公式
double pressureDeviation = Math.abs(condenserPressure - expectedPressure);
if (pressureDeviation > 0.8) {
Alarm alarm = new Alarm();
alarm.setId(UUID.randomUUID().toString());
alarm.setSystemName("CORRELATION_ANALYSIS");
alarm.setParameterName("power_condenser_correlation");
alarm.setLevel(AlarmLevel.MEDIUM);
alarm.setMessage(String.format("发电负荷与凝汽器压力关联异常,压力偏差: %.2f kPa", pressureDeviation));
alarm.setTimestamp(LocalDateTime.now());
alarm.setStatus(AlarmStatus.ACTIVE);
alarms.add(alarm);
}
}
} catch (Exception e) {
log.error("关联性报警检测失败", e);
}
return alarms;
}
/**
* 预测性报警检测
* 基于历史数据和机器学习模型预测未来可能的故障
*/
private List<Alarm> detectPredictiveAlarms(Map<String, SensorData> data) {
List<Alarm> alarms = new ArrayList<>();
try {
for (Map.Entry<String, SensorData> entry : data.entrySet()) {
String systemName = entry.getKey();
SensorData currentData = entry.getValue();
// 获取历史数据用于预测
List<SensorData> historicalData = getHistoricalData(systemName, Duration.ofHours(24));
// 使用机器学习模型进行故障预测
FaultPredictionResult prediction = mlService.predictFaults(systemName, historicalData, currentData);
if (prediction.hasPotentialFaults()) {
for (PredictedFault fault : prediction.getPredictedFaults()) {
if (fault.getProbability() > 0.7) { // 概率超过70%
Alarm alarm = createPredictiveAlarm(systemName, fault);
alarms.add(alarm);
}
}
}
}
} catch (Exception e) {
log.error("预测性报警检测失败", e);
}
return alarms;
}
/**
* 处理报警
*/
private void processAlarms(List<Alarm> alarms) {
for (Alarm alarm : alarms) {
try {
// 检查是否为重复报警
if (isDuplicateAlarm(alarm)) {
continue;
}
// 报警抑制逻辑
if (isAlarmSuppressed(alarm)) {
alarm.setStatus(AlarmStatus.SUPPRESSED);
}
// 存储报警
storeAlarm(alarm);
// 发送通知
if (alarm.getStatus() == AlarmStatus.ACTIVE) {
sendAlarmNotification(alarm);
}
// 触发自动响应
triggerAutomaticResponse(alarm);
log.info("处理报警: {} - {} - {}", alarm.getLevel(), alarm.getSystemName(), alarm.getMessage());
} catch (Exception e) {
log.error("处理报警失败: {}", alarm, e);
}
}
}
/**
* 发送报警通知
*/
private void sendAlarmNotification(Alarm alarm) {
try {
// 根据报警级别确定通知方式
List<NotificationChannel> channels = determineNotificationChannels(alarm.getLevel());
for (NotificationChannel channel : channels) {
NotificationMessage message = createNotificationMessage(alarm, channel);
notificationService.sendNotification(channel, message);
}
} catch (Exception e) {
log.error("发送报警通知失败: {}", alarm, e);
}
}
/**
* 触发自动响应
*/
private void triggerAutomaticResponse(Alarm alarm) {
try {
// 根据报警类型和级别触发自动响应
AutoResponseRule rule = ruleEngine.getAutoResponseRule(alarm);
if (rule != null && rule.isEnabled()) {
AutoResponseResult result = rule.execute(alarm);
if (result.isSuccess()) {
log.info("自动响应执行成功: {} - {}", alarm.getId(), result.getDescription());
// 记录自动响应历史
recordAutoResponse(alarm, result);
} else {
log.warn("自动响应执行失败: {} - {}", alarm.getId(), result.getErrorMessage());
}
}
} catch (Exception e) {
log.error("触发自动响应失败: {}", alarm, e);
}
}
/**
* 报警确认
*/
public boolean acknowledgeAlarm(String alarmId, String operator, String comment) {
try {
Alarm alarm = getAlarmById(alarmId);
if (alarm == null) {
return false;
}
alarm.setStatus(AlarmStatus.ACKNOWLEDGED);
alarm.setAcknowledgedBy(operator);
alarm.setAcknowledgedAt(LocalDateTime.now());
alarm.setAcknowledgeComment(comment);
updateAlarm(alarm);
log.info("报警已确认: {} by {}", alarmId, operator);
return true;
} catch (Exception e) {
log.error("确认报警失败: {}", alarmId, e);
return false;
}
}
/**
* 报警解决
*/
public boolean resolveAlarm(String alarmId, String operator, String solution) {
try {
Alarm alarm = getAlarmById(alarmId);
if (alarm == null) {
return false;
}
alarm.setStatus(AlarmStatus.RESOLVED);
alarm.setResolvedBy(operator);
alarm.setResolvedAt(LocalDateTime.now());
alarm.setResolutionComment(solution);
updateAlarm(alarm);
log.info("报警已解决: {} by {}", alarmId, operator);
return true;
} catch (Exception e) {
log.error("解决报警失败: {}", alarmId, e);
return false;
}
}
// 辅助方法
private Map<String, SensorData> getCurrentRealtimeData() {
Map<String, SensorData> data = new HashMap<>();
String[] systems = {"COMBUSTION_SYSTEM", "STEAM_WATER_SYSTEM", "GENERATOR_SYSTEM", "COOLING_SYSTEM", "ENVIRONMENTAL_SYSTEM"};
for (String system : systems) {
String key = "realtime:" + system;
SensorData sensorData = (SensorData) redisTemplate.opsForValue().get(key);
if (sensorData != null) {
data.put(system, sensorData);
}
}
return data;
}
private ThresholdConfig getThresholdConfig(String systemName, String paramName) {
// 从配置中获取阈值设置
String configKey = "threshold:" + systemName + ":" + paramName;
return (ThresholdConfig) redisTemplate.opsForValue().get(configKey);
}
private Alarm checkThreshold(String systemName, String paramName, double value, ThresholdConfig config) {
AlarmLevel level = null;
String message = null;
if (value > config.getCriticalHigh()) {
level = AlarmLevel.CRITICAL;
message = String.format("%s 严重超高限: %.2f (限值: %.2f)", paramName, value, config.getCriticalHigh());
} else if (value < config.getCriticalLow()) {
level = AlarmLevel.CRITICAL;
message = String.format("%s 严重超低限: %.2f (限值: %.2f)", paramName, value, config.getCriticalLow());
} else if (value > config.getHighHigh()) {
level = AlarmLevel.HIGH;
message = String.format("%s 超高限: %.2f (限值: %.2f)", paramName, value, config.getHighHigh());
} else if (value < config.getLowLow()) {
level = AlarmLevel.HIGH;
message = String.format("%s 超低限: %.2f (限值: %.2f)", paramName, value, config.getLowLow());
} else if (value > config.getHigh()) {
level = AlarmLevel.MEDIUM;
message = String.format("%s 超高: %.2f (限值: %.2f)", paramName, value, config.getHigh());
} else if (value < config.getLow()) {
level = AlarmLevel.MEDIUM;
message = String.format("%s 超低: %.2f (限值: %.2f)", paramName, value, config.getLow());
}
if (level != null) {
Alarm alarm = new Alarm();
alarm.setId(UUID.randomUUID().toString());
alarm.setSystemName(systemName);
alarm.setParameterName(paramName);
alarm.setLevel(level);
alarm.setMessage(message);
alarm.setValue(value);
alarm.setTimestamp(LocalDateTime.now());
alarm.setStatus(AlarmStatus.ACTIVE);
alarm.setType("THRESHOLD");
return alarm;
}
return null;
}
private List<SensorData> getHistoricalData(String systemName, Duration duration) {
// 从InfluxDB获取历史数据
// 这里简化处理
return new ArrayList<>();
}
private TrendAnalysisResult analyzeTrend(List<SensorData> data, String paramName) {
// 趋势分析逻辑
return new TrendAnalysisResult(false, 0.0, "正常");
}
private Alarm createTrendAlarm(String systemName, String paramName, TrendAnalysisResult trend) {
Alarm alarm = new Alarm();
alarm.setId(UUID.randomUUID().toString());
alarm.setSystemName(systemName);
alarm.setParameterName(paramName);
alarm.setLevel(AlarmLevel.MEDIUM);
alarm.setMessage(String.format("%s 趋势异常: %s", paramName, trend.getDescription()));
alarm.setTimestamp(LocalDateTime.now());
alarm.setStatus(AlarmStatus.ACTIVE);
alarm.setType("TREND");
return alarm;
}
private Alarm createAnomalyAlarm(String systemName, AnomalyPoint anomaly) {
Alarm alarm = new Alarm();
alarm.setId(UUID.randomUUID().toString());
alarm.setSystemName(systemName);
alarm.setParameterName(anomaly.getParameterName());
alarm.setLevel(AlarmLevel.MEDIUM);
alarm.setMessage(String.format("%s 异常检测: 异常分数 %.2f", anomaly.getParameterName(), anomaly.getAnomalyScore()));
alarm.setTimestamp(LocalDateTime.now());
alarm.setStatus(AlarmStatus.ACTIVE);
alarm.setType("ANOMALY");
return alarm;
}
private Alarm createPredictiveAlarm(String systemName, PredictedFault fault) {
Alarm alarm = new Alarm();
alarm.setId(UUID.randomUUID().toString());
alarm.setSystemName(systemName);
alarm.setParameterName(fault.getComponentName());
alarm.setLevel(AlarmLevel.LOW);
alarm.setMessage(String.format("预测性报警: %s 可能在 %d 小时内发生故障 (概率: %.1f%%)",
fault.getFaultType(), fault.getTimeToFailure(), fault.getProbability() * 100));
alarm.setTimestamp(LocalDateTime.now());
alarm.setStatus(AlarmStatus.ACTIVE);
alarm.setType("PREDICTIVE");
return alarm;
}
private boolean isDuplicateAlarm(Alarm alarm) {
// 检查是否为重复报警
String key = "alarm:active:" + alarm.getSystemName() + ":" + alarm.getParameterName();
return redisTemplate.hasKey(key);
}
private boolean isAlarmSuppressed(Alarm alarm) {
// 检查报警抑制规则
String suppressKey = "alarm:suppress:" + alarm.getSystemName();
return redisTemplate.hasKey(suppressKey);
}
private void storeAlarm(Alarm alarm) {
// 存储到Redis(活动报警)
String activeKey = "alarm:active:" + alarm.getSystemName() + ":" + alarm.getParameterName();
redisTemplate.opsForValue().set(activeKey, alarm, Duration.ofHours(24));
// 存储到InfluxDB(历史报警)
Point point = Point.measurement("alarms")
.time(alarm.getTimestamp().toInstant(ZoneOffset.UTC), WritePrecision.MS)
.tag("system", alarm.getSystemName())
.tag("parameter", alarm.getParameterName())
.tag("level", alarm.getLevel().name())
.tag("type", alarm.getType())
.addField("message", alarm.getMessage())
.addField("value", alarm.getValue() != null ? alarm.getValue() : 0.0)
.build();
influxDBTemplate.writePoint(point);
}
private List<NotificationChannel> determineNotificationChannels(AlarmLevel level) {
List<NotificationChannel> channels = new ArrayList<>();
switch (level) {
case CRITICAL:
channels.add(NotificationChannel.SMS);
channels.add(NotificationChannel.EMAIL);
channels.add(NotificationChannel.VOICE_CALL);
channels.add(NotificationChannel.WEB_PUSH);
break;
case HIGH:
channels.add(NotificationChannel.EMAIL);
channels.add(NotificationChannel.WEB_PUSH);
break;
case MEDIUM:
channels.add(NotificationChannel.WEB_PUSH);
break;
case LOW:
case INFO:
channels.add(NotificationChannel.WEB_PUSH);
break;
}
return channels;
}
private NotificationMessage createNotificationMessage(Alarm alarm, NotificationChannel channel) {
NotificationMessage message = new NotificationMessage();
message.setTitle("发电厂报警 - " + alarm.getLevel().getDescription());
message.setContent(alarm.getMessage());
message.setUrgency(alarm.getLevel().getPriority());
message.setTimestamp(alarm.getTimestamp());
return message;
}
private Alarm getAlarmById(String alarmId) {
// 从数据库获取报警信息
return null; // 简化处理
}
private void updateAlarm(Alarm alarm) {
// 更新报警状态到数据库
}
private void recordAutoResponse(Alarm alarm, AutoResponseResult result) {
// 记录自动响应历史
}
}
3 数据可视化与报表
3.1 实时监控大屏
/**
* 实时监控数据服务
* 为大屏展示提供数据支持
*/
@RestController
@RequestMapping("/api/dashboard")
@CrossOrigin(origins = "*")
public class DashboardController {
@Autowired
private DashboardService dashboardService;
@Autowired
private KPICalculationService kpiService;
@Autowired
private AlarmService alarmService;
/**
* 获取系统总览数据
*/
@GetMapping("/overview")
public ResponseEntity<SystemOverview> getSystemOverview() {
try {
SystemOverview overview = dashboardService.getSystemOverview();
return ResponseEntity.ok(overview);
} catch (Exception e) {
log.error("获取系统总览失败", e);
return ResponseEntity.status(500).build();
}
}
/**
* 获取实时KPI数据
*/
@GetMapping("/kpis")
public ResponseEntity<Map<String, Double>> getRealTimeKPIs() {
try {
Map<String, Double> kpis = kpiService.getCurrentKPIs();
return ResponseEntity.ok(kpis);
} catch (Exception e) {
log.error("获取KPI数据失败", e);
return ResponseEntity.status(500).build();
}
}
/**
* 获取活动报警列表
*/
@GetMapping("/alarms/active")
public ResponseEntity<List<AlarmSummary>> getActiveAlarms() {
try {
List<AlarmSummary> alarms = alarmService.getActiveAlarms();
return ResponseEntity.ok(alarms);
} catch (Exception e) {
log.error("获取活动报警失败", e);
return ResponseEntity.status(500).build();
}
}
/**
* 获取趋势数据
*/
@GetMapping("/trends/{parameter}")
public ResponseEntity<TrendData> getTrendData(
@PathVariable String parameter,
@RequestParam @DateTimeFormat(iso = DateTimeFormat.ISO.DATE_TIME) LocalDateTime startTime,
@RequestParam @DateTimeFormat(iso = DateTimeFormat.ISO.DATE_TIME) LocalDateTime endTime) {
try {
TrendData trendData = dashboardService.getTrendData(parameter, startTime, endTime);
return ResponseEntity.ok(trendData);
} catch (Exception e) {
log.error("获取趋势数据失败", e);
return ResponseEntity.status(500).build();
}
}
/**
* 获取设备状态分布
*/
@GetMapping("/equipment/status")
public ResponseEntity<EquipmentStatusDistribution> getEquipmentStatus() {
try {
EquipmentStatusDistribution status = dashboardService.getEquipmentStatusDistribution();
return ResponseEntity.ok(status);
} catch (Exception e) {
log.error("获取设备状态失败", e);
return ResponseEntity.status(500).build();
}
}
/**
* 获取能耗分析数据
*/
@GetMapping("/energy/analysis")
public ResponseEntity<EnergyAnalysis> getEnergyAnalysis(
@RequestParam @DateTimeFormat(iso = DateTimeFormat.ISO.DATE) LocalDate date) {
try {
EnergyAnalysis analysis = dashboardService.getEnergyAnalysis(date);
return ResponseEntity.ok(analysis);
} catch (Exception e) {
log.error("获取能耗分析失败", e);
return ResponseEntity.status(500).build();
}
}
}
4 总结
本系列文章详细介绍了燃煤发电厂智能监控系统的完整实现方案,涵盖了:
- 燃烧系统监控:煤粉制备、炉膛燃烧的实时监控和自动控制
- 汽水系统控制:汽包水位、蒸汽温度压力的精确控制和发电机组监测
- 并网控制与冷却优化:电网同步并网和冷却系统智能优化
- 系统集成与数据分析:统一数据采集、智能报警和可视化展示
整个系统采用现代化的Java技术栈,包括Spring Boot、Redis、InfluxDB、Kafka等,实现了:
- 实时数据采集:毫秒级数据采集和处理
- 智能控制算法:PID控制、多目标优化等
- 多级报警机制:阈值、趋势、异常、预测性报警
- 可视化监控:实时大屏、历史趋势、报表分析
- 系统集成:统一的数据模型和接口标准
该系统为燃煤发电厂的数字化转型提供了完整的解决方案,有效提升了运行效率、安全性和环保水平。
【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)