因果推断中的do-calculus与强化学习策略评估
因果推断中的do-calculus与强化学习策略评估
引言
在人工智能领域,因果推断和强化学习作为两个重要的研究方向,近年来呈现出日益紧密的联系。传统强化学习算法依赖于大量的环境交互数据,但在许多现实场景中,收集数据成本高昂或存在安全隐患。因果推断中的do-calculus为我们提供了一种全新的视角,能够从观察数据中推断干预效果,从而显著提升强化学习策略评估的效率和安全性。
本文将深入探讨do-calculus在强化学习策略评估中的应用,通过理论分析和代码实例,展示如何利用因果推断方法在不需要实际执行策略的情况下评估其性能。这种交叉学科的方法不仅扩展了强化学习的应用边界,也为解决样本效率低下等问题提供了新的思路。
因果推断与do-calculus基础
因果图与干预概念
因果图是表示变量间因果关系的有效工具,其中节点代表变量,有向边表示因果关系。在因果推断中,我们区分观察条件概率P(Y|X)和干预条件概率P(Y|do(X))。前者表示在观察到X=x时Y的分布,后者表示通过外部干预将X设置为x时Y的分布。
import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
from scipy import stats
# 创建简单的因果图示例
def create_causal_graph():
G = nx.DiGraph()
# 添加节点
nodes = ['X', 'Y', 'Z', 'U']
G.add_nodes_from(nodes)
# 添加边表示因果关系
edges = [('Z', 'X'), ('Z', 'Y'), ('X', 'Y'), ('U', 'X'), ('U', 'Y')]
G.add_edges_from(edges)
return G
# 可视化因果图
def plot_causal_graph(G):
plt.figure(figsize=(8, 6))
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_size=2000,
node_color='lightblue', font_size=16,
arrowsize=20, arrowstyle='->')
plt.title("因果图示例", fontsize=18)
plt.show()
# 创建并显示因果图
G = create_causal_graph()
plot_causal_graph(G)
do-calculus三大规则
do-calculus由Judea Pearl提出,包含三条基本规则,用于将包含do算子的表达式转换为不包含do算子的可估计表达式:
- 插入/删除观察值:在特定条件下,可以插入或删除观察变量
- 行动/观察交换:在特定条件下,可以将do算子替换为条件概率
- 插入/删除行动:在特定条件下,可以插入或删除干预变量
这些规则使我们能够在已知因果图结构的情况下,确定哪些因果效应可以从观测数据中估计。
class DoCalculus:
def __init__(self, graph):
self.graph = graph
self.directed_edges = list(graph.edges())
def is_d_separated(self, X, Y, Z):
"""
检查在条件集Z下,X和Y是否d-分离
"""
# 简化版的d-分离检查(实际实现更复杂)
paths = list(nx.all_simple_paths(self.graph.to_undirected(), X, Y))
for path in paths:
if self._is_path_blocked(path, Z):
continue
else:
return False
return True
def _is_path_blocked(self, path, Z):
"""
检查路径是否被Z阻塞
"""
# 简化实现 - 实际需要检查碰撞节点、链节点和分叉节点
for node in path[1:-1]: # 排除端点
if node in Z:
return True
return False
def rule1(self, Y, X, Z, W):
"""
Rule 1: 插入/删除观察值
P(y|do(x), z, w) = P(y|do(x), w) if (Y⊥Z|X,W) in G_X
"""
# 创建干预图G_X(删除指向X的边)
G_x = self.graph.copy()
incoming_edges = [(src, tgt) for src, tgt in G_x.edges() if tgt == X]
G_x.remove_edges_from(incoming_edges)
calculus = DoCalculus(G_x)
if calculus.is_d_separated(Y, Z, [X] + W):
return f"P(Y|do(X),{','.join(Z)},{','.join(W)}) = P(Y|do(X),{','.join(W)})"
else:
return "Rule 1 不适用"
def rule2(self, Y, X, Z, W):
"""
Rule 2: 行动/观察交换
P(y|do(x), do(z), w) = P(y|do(x), z, w) if (Y⊥Z|X,W) in G_XZ
"""
# 创建干预图G_XZ(删除指向X和Z的边)
G_xz = self.graph.copy()
for node in [X, Z]:
incoming_edges = [(src, tgt) for src, tgt in G_xz.edges() if tgt == node]
G_xz.remove_edges_from(incoming_edges)
calculus = DoCalculus(G_xz)
if calculus.is_d_separated(Y, Z, [X] + W):
return f"P(Y|do(X),do({','.join(Z)}),{','.join(W)}) = P(Y|do(X),{','.join(Z)},{','.join(W)})"
else:
return "Rule 2 不适用"
def rule3(self, Y, X, Z, W):
"""
Rule 3: 插入/删除行动
P(y|do(x), do(z), w) = P(y|do(x), w) if (Y⊥Z|X,W) in G_XZ_
"""
# 创建干预图G_XZ_(删除指向X的边和从Z出发的边)
G_xz_ = self.graph.copy()
# 删除指向X的边
incoming_edges_x = [(src, tgt) for src, tgt in G_xz_.edges() if tgt == X]
G_xz_.remove_edges_from(incoming_edges_x)
# 删除从Z出发的边
outgoing_edges_z = [(src, tgt) for src, tgt in G_xz_.edges() if src in Z]
G_xz_.remove_edges_from(outgoing_edges_z)
calculus = DoCalculus(G_xz_)
if calculus.is_d_separated(Y, Z, [X] + W):
return f"P(Y|do(X),do({','.join(Z)}),{','.join(W)}) = P(Y|do(X),{','.join(W)})"
else:
return "Rule 3 不适用"
# 使用示例
do_calc = DoCalculus(G)
result1 = do_calc.rule1(['Y'], 'X', ['Z'], ['U'])
result2 = do_calc.rule2(['Y'], 'X', ['Z'], ['U'])
result3 = do_calc.rule3(['Y'], 'X', ['Z'], ['U'])
print("Do-calculus 规则应用示例:")
print(f"规则1: {result1}")
print(f"规则2: {result2}")
print(f"规则3: {result3}")
强化学习策略评估的挑战
传统策略评估方法
在强化学习中,策略评估旨在估计给定策略的价值函数。传统方法包括:
- 蒙特卡洛方法:通过完整的回合采样估计价值函数
- 时序差分学习:结合蒙特卡洛和动态规划的思想
- 基于模型的方法:已知环境模型时使用动态规划
这些方法虽然有效,但通常需要大量与环境交互的样本,在实际应用中成本高昂。
离线策略评估问题
离线策略评估(Off-Policy Evaluation, OPE)旨在使用从行为策略收集的数据来评估目标策略的价值,而不需要实际执行目标策略。这是强化学习中一个重要且具有挑战性的问题。
class TraditionalOPE:
def __init__(self, behavior_data):
self.data = behavior_data
def importance_sampling(self, target_policy, discount_factor=0.99):
"""
重要性采样方法进行离线策略评估
"""
values = []
for episode in self.data:
cumulative_reward = 0
importance_ratio = 1.0
for t, (state, action, reward, behavior_prob) in enumerate(episode):
# 计算目标策略在当前状态下选择该动作的概率
target_prob = target_policy(state, action)
# 更新重要性权重
importance_ratio *= (target_prob / behavior_prob) if behavior_prob > 0 else 0
# 计算折扣累积奖励
cumulative_reward += (discount_factor ** t) * reward * importance_ratio
values.append(cumulative_reward)
return np.mean(values), np.std(values)
def doubly_robust(self, target_policy, value_model, discount_factor=0.99):
"""
双重稳健估计器
"""
values = []
for episode in self.data:
cumulative_value = 0
importance_ratio = 1.0
for t, (state, action, reward, next_state, behavior_prob, done) in enumerate(episode):
target_prob = target_policy(state, action)
importance_ratio *= (target_prob / behavior_prob) if behavior_prob > 0 else 0
# 价值模型预测
state_value = value_model.predict(state)
next_state_value = 0 if done else value_model.predict(next_state)
# 双重稳健估计
td_error = reward + discount_factor * next_state_value - state_value
dr_estimate = state_value + importance_ratio * td_error
cumulative_value += (discount_factor ** t) * dr_estimate
values.append(cumulative_value)
return np.mean(values), np.std(values)
# 生成示例行为策略数据
def generate_behavior_data(num_episodes=1000, episode_length=10):
data = []
for _ in range(num_episodes):
episode = []
for t in range(episode_length):
state = np.random.normal(0, 1, 5) # 5维状态
action = np.random.choice([0, 1, 2]) # 3个动作
reward = np.random.normal(0, 1) # 奖励
next_state = state + np.random.normal(0, 0.1, 5)
behavior_prob = np.random.uniform(0.1, 0.5) # 行为策略概率
done = t == episode_length - 1
episode.append((state, action, reward, next_state, behavior_prob, done))
data.append(episode)
return data
# 示例目标策略和价值模型
def target_policy(state, action):
# 简化目标策略
return np.random.dirichlet([1, 1, 1])[action]
class SimpleValueModel:
def predict(self, state):
return np.random.normal(0, 1)
# 测试传统OPE方法
behavior_data = generate_behavior_data()
ope = TraditionalOPE(behavior_data)
# 重要性采样
is_mean, is_std = ope.importance_sampling(target_policy)
print(f"重要性采样估计: {is_mean:.4f} ± {is_std:.4f}")
# 双重稳健估计
value_model = SimpleValueModel()
dr_mean, dr_std = ope.doubly_robust(target_policy, value_model)
print(f"双重稳健估计: {dr_mean:.4f} ± {dr_std:.4f}")
基于do-calculus的因果策略评估
因果视角下的策略评估
从因果推断的角度看,策略评估可以视为估计干预"执行策略π"对累积奖励的因果效应。do-calculus提供了一套形式化工具,用于从观察数据中识别和估计这种因果效应。
在因果图中,策略干预会切断所有指向动作节点的边,并按照策略的概率分布设置动作值。这种视角使我们能够利用do-calculus规则来推导可识别的估计量。
因果识别条件
要使策略的价值函数可从观察数据中识别,需要满足以下条件:
- 可忽略性:给定状态,动作与潜在结果独立
- 正性:行为策略对所有可能的状态-动作对都有非零概率
- 一致性:观察到的结果与干预下的结果一致
class CausalPolicyEvaluator:
def __init__(self, causal_graph, data):
self.graph = causal_graph
self.data = data
self.do_calculus = DoCalculus(causal_graph)
def check_identifiability(self, policy, state_vars, action_var, reward_var):
"""
检查策略价值是否可从观察数据中识别
"""
# 简化版的识别检查
# 在实际应用中,这需要更复杂的d-分离测试
# 检查是否所有后门路径都被阻塞
backdoor_paths = self.find_backdoor_paths(action_var, reward_var)
identifiable = True
for path in backdoor_paths:
if not self.is_path_blocked_by_set(path, state_vars):
identifiable = False
break
return identifiable
def find_backdoor_paths(self, treatment, outcome):
"""
查找treatment和outcome之间的后门路径
"""
# 简化实现 - 实际需要更复杂的图遍历算法
undirected_graph = self.graph.to_undirected()
all_paths = list(nx.all_simple_paths(undirected_graph, treatment, outcome))
backdoor_paths = []
for path in all_paths:
# 检查是否为后门路径(指向treatment的箭头)
if len(path) >= 2:
edge1 = (path[1], path[0]) # 从第二个节点指向第一个节点
if edge1 in self.graph.edges():
backdoor_paths.append(path)
return backdoor_paths
def is_path_blocked_by_set(self, path, conditioning_set):
"""
检查路径是否被条件集阻塞
"""
# 检查路径中的碰撞节点和非碰撞节点
for i in range(1, len(path)-1):
node = path[i]
prev_node = path[i-1]
next_node = path[i+1]
# 检查是否为碰撞节点 (-> node <-)
if (prev_node, node) in self.graph.edges() and (next_node, node) in self.graph.edges():
# 碰撞节点:如果节点或其子孙不在条件集中,则路径被阻塞
if node not in conditioning_set and not self.has_descendant_in_set(node, conditioning_set):
return True
else:
# 非碰撞节点:如果节点在条件集中,则路径被阻塞
if node in conditioning_set:
return True
return False
def has_descendant_in_set(self, node, conditioning_set):
"""
检查节点是否有子孙在条件集中
"""
descendants = nx.descendants(self.graph, node)
return len(descendants.intersection(conditioning_set)) > 0
def causal_ope(self, target_policy, state_vars, action_var, reward_var, discount_factor=0.99):
"""
基于因果推断的离线策略评估
"""
# 检查可识别性
if not self.check_identifiability(target_policy, state_vars, action_var, reward_var):
raise ValueError("策略价值不可从观察数据中识别")
# 使用后门调整公式进行估计
values = []
for episode in self.data:
cumulative_reward = 0
for t, transition in enumerate(episode):
state, action, reward, behavior_prob = transition[:4]
# 计算目标策略下采取该动作的概率
target_prob = target_policy(state, action)
# 基于后门调整的权重
weight = target_prob / behavior_prob if behavior_prob > 0 else 0
cumulative_reward += (discount_factor ** t) * reward * weight
values.append(cumulative_reward)
return np.mean(values), np.std(values)
# 创建更复杂的因果图用于策略评估
def create_rl_causal_graph():
G = nx.DiGraph()
# 添加节点
nodes = ['S_t', 'A_t', 'R_t', 'S_{t+1}', 'U']
G.add_nodes_from(nodes)
# 添加边表示因果关系
edges = [
('S_t', 'A_t'), ('S_t', 'R_t'), ('S_t', 'S_{t+1}'),
('A_t', 'R_t'), ('A_t', 'S_{t+1}'),
('U', 'S_t'), ('U', 'R_t')
]
G.add_edges_from(edges)
return G
# 测试因果策略评估
rl_graph = create_rl_causal_graph()
causal_evaluator = CausalPolicyEvaluator(rl_graph, behavior_data)
state_vars = ['S_t']
action_var = 'A_t'
reward_var = 'R_t'
identifiable = causal_evaluator.check_identifiability(target_policy, state_vars, action_var, reward_var)
print(f"策略价值可识别: {identifiable}")
if identifiable:
causal_mean, causal_std = causal_evaluator.causal_ope(
target_policy, state_vars, action_var, reward_var
)
print(f"因果策略评估: {causal_mean:.4f} ± {causal_std:.4f}")
实际应用案例:医疗治疗策略评估
问题设定
考虑一个医疗场景,我们需要评估不同的治疗策略对患者长期健康的影响。由于伦理和成本考虑,我们不能随意对患者实施不同的治疗策略,但我们可以从历史医疗记录中获取观察数据。
在这个场景中:
- 状态(S):患者的健康状况指标
- 动作(A):治疗选择(药物A、药物B、无治疗)
- 奖励®:健康改善程度
- 未观测变量(U):患者的遗传因素、生活方式等
class MedicalPolicyEvaluation:
def __init__(self):
self.causal_graph = self.create_medical_causal_graph()
def create_medical_causal_graph(self):
"""创建医疗领域的因果图"""
G = nx.DiGraph()
nodes = [
'Age', 'Disease_Severity', 'Genetic_Risk', # 状态变量
'Treatment', # 动作
'Side_Effects', 'Health_Outcome', # 结果变量
'Lifestyle' # 未观测变量
]
G.add_nodes_from(nodes)
edges = [
# 状态影响治疗决策
('Age', 'Treatment'), ('Disease_Severity', 'Treatment'),
# 状态影响结果
('Age', 'Health_Outcome'), ('Disease_Severity', 'Health_Outcome'),
# 治疗影响结果和副作用
('Treatment', 'Health_Outcome'), ('Treatment', 'Side_Effects'),
# 未观测变量的影响
('Genetic_Risk', 'Disease_Severity'), ('Genetic_Risk', 'Health_Outcome'),
('Lifestyle', 'Treatment'), ('Lifestyle', 'Health_Outcome')
]
G.add_edges_from(edges)
return G
def generate_medical_data(self, num_patients=5000):
"""生成模拟医疗数据"""
np.random.seed(42)
data = []
for i in range(num_patients):
# 生成患者特征
age = np.random.normal(60, 15)
genetic_risk = np.random.binomial(1, 0.3)
lifestyle = np.random.normal(0, 1) # 未观测变量
# 疾病严重程度受年龄和遗传风险影响
disease_severity = (0.1 * age + 0.5 * genetic_risk +
0.3 * lifestyle + np.random.normal(0, 1))
# 治疗选择受年龄、疾病严重程度和生活方式影响
treatment_probs = self.compute_treatment_probs(age, disease_severity, lifestyle)
treatment = np.random.choice([0, 1, 2], p=treatment_probs)
# 健康结果
health_outcome = self.compute_health_outcome(
age, disease_severity, treatment, genetic_risk, lifestyle
)
# 副作用
side_effects = self.compute_side_effects(treatment, age)
data.append({
'Age': age,
'Disease_Severity': disease_severity,
'Genetic_Risk': genetic_risk,
'Treatment': treatment,
'Health_Outcome': health_outcome,
'Side_Effects': side_effects,
'Treatment_Prob': treatment_probs[treatment]
})
return pd.DataFrame(data)
def compute_treatment_probs(self, age, disease_severity, lifestyle):
"""计算各治疗选择的概率"""
# 模拟医生决策过程
base_probs = np.array([0.4, 0.4, 0.2]) # [无治疗, 药物A, 药物B]
# 年龄影响:老年人更可能接受治疗
age_effect = max(0, (age - 60) / 30) * 0.2
# 疾病严重程度影响:病情越重越可能治疗
severity_effect = max(0, disease_severity) * 0.3
# 生活方式影响(未观测)
lifestyle_effect = lifestyle * 0.1
# 调整概率
adjusted_probs = base_probs.copy()
treatment_preference = age_effect + severity_effect + lifestyle_effect
# 增加治疗概率,减少无治疗概率
adjusted_probs[0] -= treatment_preference * 0.5
adjusted_probs[1] += treatment_preference * 0.3
adjusted_probs[2] += treatment_preference * 0.2
# 确保概率有效
adjusted_probs = np.clip(adjusted_probs, 0.05, 0.9)
adjusted_probs /= adjusted_probs.sum()
return adjusted_probs
def compute_health_outcome(self, age, disease_severity, treatment, genetic_risk, lifestyle):
"""计算健康结果"""
base_outcome = 50 # 基础健康分数
# 负面影响因素
age_effect = -0.2 * age
severity_effect = -2.0 * disease_severity
genetic_effect = -10 * genetic_risk
lifestyle_effect = -5 * abs(lifestyle)
# 治疗效果
if treatment == 0: # 无治疗
treatment_effect = 0
elif treatment == 1: # 药物A
treatment_effect = 15 - 0.1 * age # 对老年人效果稍差
else: # 药物B
treatment_effect = 20 - 0.15 * age - 5 * genetic_risk # 受遗传因素影响
outcome = (base_outcome + age_effect + severity_effect +
genetic_effect + lifestyle_effect + treatment_effect +
np.random.normal(0, 5))
return max(0, outcome)
def compute_side_effects(self, treatment, age):
"""计算副作用"""
if treatment == 0:
return np.random.poisson(1) # 无治疗的基线副作用
elif treatment == 1:
return np.random.poisson(2 + 0.02 * age) # 药物A副作用
else:
return np.random.poisson(3 + 0.03 * age) # 药物B副作用
def evaluate_treatment_policy(self, data, target_policy):
"""评估治疗策略"""
# 使用逆概率加权进行估计
weights = []
outcomes = []
for _, patient in data.iterrows():
state = [patient['Age'], patient['Disease_Severity']]
action = patient['Treatment']
outcome = patient['Health_Outcome']
behavior_prob = patient['Treatment_Prob']
# 目标策略下选择该治疗的概率
target_prob = target_policy(state, action)
# 计算权重
weight = target_prob / behavior_prob if behavior_prob > 0 else 0
weights.append(weight)
outcomes.append(outcome)
# 加权平均结果
weighted_outcomes = np.array(outcomes) * np.array(weights)
estimate = np.mean(weighted_outcomes)
std = np.std(weighted_outcomes) / np.sqrt(len(outcomes))
return estimate, std
# 定义目标策略
def conservative_treatment_policy(state, action):
"""保守治疗策略:优先选择无治疗或副作用小的治疗"""
age, severity = state
# 基于年龄和疾病严重程度的策略
if severity < 1 and age < 70:
# 病情轻微且年龄较小:倾向于无治疗
probs = [0.6, 0.3, 0.1] # [无治疗, 药物A, 药物B]
elif severity >= 1 and age >= 70:
# 病情严重且年龄较大:倾向于药物A(副作用较小)
probs = [0.2, 0.6, 0.2]
else:
# 其他情况:平衡考虑
probs = [0.3, 0.5, 0.2]
return probs[action]
# 运行医疗策略评估案例
medical_eval = MedicalPolicyEvaluation()
medical_data = medical_eval.generate_medical_data()
print("医疗策略评估案例")
print(f"数据集大小: {len(medical_data)}")
print(f"平均健康结果: {medical_data['Health_Outcome'].mean():.2f}")
# 评估保守治疗策略
estimate, std = medical_eval.evaluate_treatment_policy(
medical_data, conservative_treatment_policy
)
print(f"保守治疗策略估计健康结果: {estimate:.2f} ± {std:.2f}")
# 对比不同策略
def aggressive_treatment_policy(state, action):
"""积极治疗策略:优先选择效果好的治疗"""
age, severity = state
if severity > 2:
probs = [0.1, 0.3, 0.6] # 病情严重时优先药物B
else:
probs = [0.2, 0.4, 0.4] # 一般情况下积极治疗
return probs[action]
aggressive_estimate, aggressive_std = medical_eval.evaluate_treatment_policy(
medical_data, aggressive_treatment_policy
)
print(f"积极治疗策略估计健康结果: {aggressive_estimate:.2f} ± {aggressive_std:.2f}")
# 计算策略提升
improvement = aggressive_estimate - estimate
print(f"策略提升: {improvement:.2f}")
理论深度与前沿进展
因果强化学习的理论基础
因果强化学习将因果推断的形式化工具与强化学习相结合,为解决样本效率、泛化性和安全性等核心问题提供了新的途径。其理论基础建立在以下几个关键概念上:
- 结构性因果模型(SCM):为环境提供形式化表示
- do-calculus:提供干预效应的识别和估计方法
- 反事实推理:允许考虑"如果采取了不同行动会怎样"的问题
前沿研究方向
当前因果强化学习的研究主要集中在以下几个方向:
- 基于反事实数据增强:通过因果模型生成反事实经验,提高样本效率
- 因果表示学习:从高维观察中学习因果特征,提高策略泛化能力
- 分层因果强化学习:在不同抽象层次上建模因果关系
- 元学习与因果推断:结合元学习快速适应新环境中的因果结构
class AdvancedCausalRL:
"""高级因果强化学习方法"""
def __init__(self, state_dim, action_dim, causal_model):
self.state_dim = state_dim
self.action_dim = action_dim
self.causal_model = causal_model
self.value_network = self.build_value_network()
def build_value_network(self):
"""构建价值网络"""
# 简化实现 - 实际使用深度学习框架
return lambda state, action: np.random.normal(0, 1)
def counterfactual_data_augmentation(self, observed_data, num_counterfactuals=100):
"""
反事实数据增强
生成如果采取不同行动会发生的反事实经验
"""
counterfactuals = []
for transition in observed_data[:num_counterfactuals]:
state, action, reward, next_state, done = transition
# 对每个可能的其他动作生成反事实
for alt_action in range(self.action_dim):
if alt_action == action:
continue
# 使用因果模型预测反事实结果
cf_reward, cf_next_state = self.causal_model.predict_counterfactual(
state, action, alt_action, reward, next_state
)
counterfactuals.append(
(state, alt_action, cf_reward, cf_next_state, done)
)
return observed_data + counterfactuals
def causal_feature_learning(self, raw_states, actions, rewards):
"""
因果特征学习
从原始状态中提取因果相关的特征
"""
# 使用因果发现算法识别关键特征
causal_features = self.identify_causal_features(raw_states, actions, rewards)
# 学习到因果特征的映射
feature_mapping = self.learn_feature_mapping(raw_states, causal_features)
return feature_mapping
def identify_causal_features(self, states, actions, rewards):
"""识别与奖励有因果关系的特征"""
# 简化实现 - 实际使用因果发现算法如PC算法、FCI等
n_features = states.shape[1] if hasattr(states, 'shape') else len(states[0])
# 基于相关性和其他测试的简单特征选择
causal_features = []
for i in range(n_features):
feature_values = [s[i] for s in states]
correlation = np.corrcoef(feature_values, rewards)[0, 1]
if abs(correlation) > 0.1: # 阈值
causal_features.append(i)
return causal_features
def learn_feature_mapping(self, raw_states, causal_features):
"""学习从原始状态到因果特征的映射"""
# 简化实现
def mapping(state):
if hasattr(state, 'shape'):
return state[causal_features]
else:
return [state[i] for i in causal_features]
return mapping
# 模拟因果模型
class SimpleCausalModel:
def predict_counterfactual(self, state, actual_action, counterfactual_action,
actual_reward, actual_next_state):
"""预测反事实结果"""
# 简化实现 - 实际需要基于SCM的精确计算
# 假设反事实奖励与实际行动和状态相关
cf_reward = actual_reward * 0.8 + np.random.normal(0, 0.5)
# 反事实下一状态
if hasattr(actual_next_state, 'copy'):
cf_next_state = actual_next_state.copy()
# 添加一些随机扰动表示不确定性
cf_next_state += np.random.normal(0, 0.1, cf_next_state.shape)
else:
cf_next_state = [x + np.random.normal(0, 0.1) for x in actual_next_state]
return cf_reward, cf_next_state
# 测试高级因果RL方法
causal_model = SimpleCausalModel()
advanced_rl = AdvancedCausalRL(
state_dim=5, action_dim=3, causal_model=causal_model
)
# 生成示例数据
example_data = [
(np.random.normal(0, 1, 5), 0, 1.0, np.random.normal(0, 1, 5), False)
for _ in range(50)
]
# 反事实数据增强
augmented_data = advanced_rl.counterfactual_data_augmentation(example_data)
print(f"原始数据点: {len(example_data)}")
print(f"增强后数据点: {len(augmented_data)}")
# 因果特征学习
raw_states = [d[0] for d in example_data]
actions = [d[1] for d in example_data]
rewards = [d[2] for d in example_data]
feature_mapping = advanced_rl.causal_feature_learning(raw_states, actions, rewards)
print("因果特征学习完成")
结论与展望
本文深入探讨了因果推断中的do-calculus在强化学习策略评估中的应用。通过理论分析和代码实例,我们展示了如何利用因果推断方法在不需要实际执行策略的情况下评估其性能,这在许多现实场景中具有重要价值。
- 点赞
- 收藏
- 关注作者
评论(0)