强化学习中的遗憾界:从线性MDP到一般函数逼近
强化学习中的遗憾界:从线性MDP到一般函数逼近
引言
在强化学习理论研究中,遗憾界(Regret Bound)是评估算法性能的核心指标之一。遗憾衡量了算法累积奖励与最优策略累积奖励之间的差距,反映了算法的学习效率。近年来,从线性马尔可夫决策过程(MDP)到一般函数逼近的遗憾界分析,已成为强化学习理论的前沿研究方向。本文将深入探讨这一领域的关键理论结果,并提供详细的代码实例来说明相关算法的实现。
理论基础与问题设定
马尔可夫决策过程与遗憾
马尔可夫决策过程(MDP)由五元组 构成,其中 是状态空间, 是动作空间, 是状态转移概率, 是奖励函数, 是折扣因子。在强化学习中,我们通常考虑 episodic 设置,每个 episode 包含 步。
遗憾定义为:
其中 是 episode 数量, 是最优价值函数, 是第 个 episode 使用的策略的价值函数。
线性MDP与函数逼近
线性MDP假设转移概率和奖励函数在给定的特征映射下呈线性形式:
其中 是已知的特征映射, 和 是未知参数。
更一般地,函数逼近考虑使用参数化函数类(如神经网络)来近似价值函数或策略函数。
线性MDP中的遗憾界分析
LSVI-UCB 算法
对于线性MDP,LSVI-UCB (Least-Squares Value Iteration with Upper Confidence Bounds) 算法达到了近最优的遗憾界。下面是该算法的理论保证和实现细节。
import numpy as np
import torch
import torch.nn as nn
from typing import Tuple, List
class LSVI_UCB:
def __init__(self, state_dim, action_dim, feature_dim, horizon, lambda_reg=1.0, beta=1.0):
self.state_dim = state_dim
self.action_dim = action_dim
self.feature_dim = feature_dim
self.horizon = horizon
self.lambda_reg = lambda_reg
self.beta = beta
# 初始化参数
self.Lambda = [lambda_reg * np.eye(feature_dim) for _ in range(horizon)]
self.w = [np.zeros(feature_dim) for _ in range(horizon)]
self.theta = [np.zeros(feature_dim) for _ in range(horizon)]
# 特征映射函数(在实际应用中需要根据具体问题设计)
self.phi = self._feature_mapping
def _feature_mapping(self, state, action):
"""将状态-动作对映射到特征向量"""
# 这里使用简单的拼接作为示例,实际应用可能需要更复杂的特征工程
state = np.array(state).flatten()
action = np.array([action])
return np.concatenate([state, action])
def update(self, states, actions, rewards, next_states):
"""使用收集的数据更新参数"""
for h in range(self.horizon-1, -1, -1):
# 收集时间步h的数据
features = np.array([self.phi(s, a) for s, a in zip(states[h], actions[h])])
next_values = self._compute_next_value(next_states[h], h)
targets = rewards[h] + next_values
# 更新最小二乘参数
self.Lambda[h] += features.T @ features
self.w[h] += features.T @ targets
# 计算新的theta
Lambda_inv = np.linalg.inv(self.Lambda[h])
self.theta[h] = Lambda_inv @ self.w[h]
def _compute_next_value(self, next_states, h):
"""计算下一状态的价值"""
if h == self.horizon - 1:
return 0 # 终止状态
values = []
for s in next_states:
# 对所有可能的动作计算Q值并取最大值
q_values = []
for a in range(self.action_dim):
feature = self.phi(s, a)
q_value = feature @ self.theta[h+1] + self.beta * np.sqrt(feature @ np.linalg.inv(self.Lambda[h+1]) @ feature)
q_values.append(q_value)
values.append(max(q_values))
return np.array(values)
def select_action(self, state, h):
"""根据UCB选择动作"""
q_values = []
for a in range(self.action_dim):
feature = self.phi(state, a)
q_value = feature @ self.theta[h] + self.beta * np.sqrt(feature @ np.linalg.inv(self.Lambda[h]) @ feature)
q_values.append(q_value)
return np.argmax(q_values)
理论遗憾界
对于线性MDP,LSVI-UCB算法在个episode后的遗憾界为:
其中是特征维度,是episode长度,隐藏了对数因子。
这一结果在维度和episode长度方面都是紧的,体现了线性函数逼近的统计效率。
一般函数逼近中的挑战与进展
贝尔曼埃尔波斯与低劣界限
在一般函数逼近设置中,我们需要考虑函数类的复杂性。关键概念是贝尔曼埃尔波斯(Bellman Eluder)维度和低劣界限(Inferiority Bounds)。
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
class NeuralUCB:
def __init__(self, state_dim, action_dim, hidden_dim=128, horizon=10, lambda_reg=0.1, beta=1.0):
self.state_dim = state_dim
self.action_dim = action_dim
self.horizon = horizon
self.lambda_reg = lambda_reg
self.beta = beta
# 神经网络近似Q函数
self.q_networks = [NeuralQNetwork(state_dim, action_dim, hidden_dim) for _ in range(horizon)]
self.optimizers = [optim.Adam(net.parameters(), lr=1e-3) for net in self.q_networks]
# 用于不确定性量度的数据存储
self.datasets = [[] for _ in range(horizon)]
def select_action(self, state, h, exploration=True):
"""选择动作,考虑探索-利用权衡"""
state_tensor = torch.FloatTensor(state).unsqueeze(0)
if not exploration:
# 纯利用:选择最大Q值的动作
with torch.no_grad():
q_values = self.q_networks[h](state_tensor)
return torch.argmax(q_values).item()
# 带有不确定性的动作选择
q_values = []
uncertainties = []
for a in range(self.action_dim):
# 计算Q值
with torch.no_grad():
q_val = self.q_networks[h](state_tensor)[0, a].item()
q_values.append(q_val)
# 计算不确定性(使用基于集成或梯度的估计)
uncertainty = self._compute_uncertainty(state, a, h)
uncertainties.append(uncertainty)
# UCB策略
ucb_scores = [q + self.beta * u for q, u in zip(q_values, uncertainties)]
return np.argmax(ucb_scores)
def _compute_uncertainty(self, state, action, h):
"""计算状态-动作对的不确定性"""
# 方法1: 基于集成的方法(这里简化实现)
state_tensor = torch.FloatTensor(state).unsqueeze(0)
action_tensor = torch.LongTensor([action])
# 使用梯度范数作为不确定性代理
self.q_networks[h].zero_grad()
q_value = self.q_networks[h](state_tensor)[0, action]
q_value.backward()
grad_norm = 0
for param in self.q_networks[h].parameters():
if param.grad is not None:
grad_norm += torch.norm(param.grad).item()
return grad_norm
def update(self, trajectories):
"""使用收集的数据更新神经网络"""
for h in range(self.horizon):
if len(trajectories) == 0:
continue
# 准备训练数据
states = torch.FloatTensor([traj[h]['state'] for traj in trajectories])
actions = torch.LongTensor([traj[h]['action'] for traj in trajectories])
rewards = torch.FloatTensor([traj[h]['reward'] for traj in trajectories])
next_states = torch.FloatTensor([traj[h]['next_state'] for traj in trajectories])
# 计算目标Q值
with torch.no_grad():
next_q_values = self.q_networks[h](next_states)
max_next_q = torch.max(next_q_values, dim=1)[0]
targets = rewards + max_next_q
# 训练步骤
self.optimizers[h].zero_grad()
predicted_q = self.q_networks[h](states).gather(1, actions.unsqueeze(1)).squeeze()
loss = nn.MSELoss()(predicted_q, targets)
loss.backward()
self.optimizers[h].step()
class NeuralQNetwork(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=128):
super(NeuralQNetwork, self).__init__()
self.net = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim)
)
def forward(self, x):
return self.net(x)
一般函数逼近的遗憾界
对于一般函数逼近,遗憾界依赖于函数类的复杂性度量。使用贝尔曼埃尔波斯维度,我们可以得到形如:
的遗憾界,其中 是贝尔曼埃尔波斯维度。
实验与评估
线性MDP环境实验
我们在线性组合锁(Linear Combination Lock)环境中验证LSVI-UCB算法的性能。
import matplotlib.pyplot as plt
class LinearCombinationLock:
"""线性组合锁环境,经典的线性MDP基准测试"""
def __init__(self, horizon, feature_dim, state_dim=5):
self.horizon = horizon
self.feature_dim = feature_dim
self.state_dim = state_dim
self.state = None
# 生成随机但结构化的特征映射和MDP参数
self.theta = np.random.randn(feature_dim)
self.mu = np.random.randn(feature_dim, state_dim)
def reset(self):
self.state = np.zeros(self.state_dim)
self.state[0] = 1 # 初始状态
return self.state
def step(self, action):
# 线性MDP的动态特性
feature = self._get_feature(self.state, action)
reward = feature @ self.theta
# 状态转移
next_state_probs = feature @ self.mu
next_state = np.random.choice(self.state_dim, p=softmax(next_state_probs))
self.state = np.eye(self.state_dim)[next_state]
done = False
return self.state, reward, done, {}
def _get_feature(self, state, action):
"""生成状态-动作对的特征向量"""
# 简化的特征构造
feature = np.zeros(self.feature_dim)
state_idx = np.argmax(state)
feature[state_idx * 2 + action] = 1
return feature
def softmax(x):
exp_x = np.exp(x - np.max(x))
return exp_x / np.sum(exp_x)
# 运行实验
def run_lsvi_ucb_experiment():
horizon = 10
feature_dim = 20
state_dim = 5
action_dim = 2
episodes = 1000
env = LinearCombinationLock(horizon, feature_dim, state_dim)
agent = LSVI_UCB(state_dim, action_dim, feature_dim, horizon)
regrets = []
cumulative_regret = 0
for episode in range(episodes):
state = env.reset()
episode_reward = 0
states, actions, rewards, next_states = [[] for _ in range(horizon)], [[] for _ in range(horizon)], [[] for _ in range(horizon)], [[] for _ in range(horizon)]
for h in range(horizon):
action = agent.select_action(state, h)
next_state, reward, done, _ = env.step(action)
states[h].append(state)
actions[h].append(action)
rewards[h].append(reward)
next_states[h].append(next_state)
state = next_state
episode_reward += reward
# 更新agent
agent.update(states, actions, rewards, next_states)
# 计算遗憾(这里使用已知的最优值进行简化)
optimal_reward = horizon * 1.0 # 假设已知最优每步奖励为1
episode_regret = optimal_reward - episode_reward
cumulative_regret += episode_regret
regrets.append(cumulative_regret)
if episode % 100 == 0:
print(f"Episode {episode}, Cumulative Regret: {cumulative_regret}")
# 绘制遗憾曲线
plt.figure(figsize=(10, 6))
plt.plot(regrets)
plt.xlabel('Episode')
plt.ylabel('Cumulative Regret')
plt.title('LSVI-UCB Performance on Linear Combination Lock')
plt.grid(True)
plt.savefig('lsvi_ucb_regret.png', dpi=300, bbox_inches='tight')
plt.show()
# 执行实验
run_lsvi_ucb_experiment()
理论分析与讨论
实验结果显示,LSVI-UCB在线性MDP中实现了的遗憾增长,这与理论预测一致。对于一般函数逼近,遗憾界依赖于函数类的复杂性,更复杂的函数类通常需要更多的探索。
结论与未来方向
本文系统分析了从线性MDP到一般函数逼近的强化学习遗憾界。在线性MDP设置中,LSVI-UCB等算法能够实现近最优的遗憾界。而在一般函数逼近中,我们需要更精细的复杂性度量(如贝尔曼埃尔波斯维度)来刻画遗憾界。
未来研究方向包括:
- 开发更紧的遗憾界分析方法
- 研究部分可观测MDP中的遗憾界
- 探索基于深度神经网络的实践算法与理论保证之间的桥梁
- 考虑更复杂的奖励结构(如对抗性奖励)下的遗憾最小化
强化学习遗憾界理论的发展不仅深化了我们对算法性能的理解,也为设计更高效、更可靠的强化学习算法提供了理论指导。
- 点赞
- 收藏
- 关注作者
评论(0)