基于YOLOv8的太阳能电池片缺陷检测项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
基于YOLOv8的太阳能电池片缺陷检测项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
源码包含:完整YOLOv8训练代码+数据集(带标注)+权重文件+直接可允许检测的yolo检测程序+直接部署教程/训练教程‘
源码在文末哔哩哔哩视频简介处获取。
项目摘要
本项目集成了YOLOv8系列缺陷检测模型与PyQt5可视化界面工具,专为太阳能电池片制造过程中常见缺陷(如裂纹、暗斑、断栅、划痕等)进行高效识别。项目支持多种输入方式(图片、文件夹、摄像头、视频),并提供完整训练流程与模型部署方案。
即使是无深度学习经验的用户,也能借助本项目实现快速训练与部署,完成自己的工业质检AI系统搭建。
前言
太阳能电池片的缺陷检测具有实时性强、检测精度高的需求。传统图像处理方法在复杂光照、背景干扰下表现不佳。而YOLOv8作为新一代目标检测算法:
- 🏆 检测速度快,部署灵活(支持ONNX、TensorRT)
- 🎯 精度高,适合微小目标、细粒度分类
- 🔧 模型结构可灵活定制(支持多头、多尺度)
- 🛠️ 强大生态与社区支持(Ultralytics官方持续更新)
一、软件核心功能介绍及效果演示
功能类型 | 描述 |
---|---|
💻 图片检测 | 拖入任意单张电池片图像,即可一键识别缺陷位置与类别 |
📂 文件夹检测 | 批量加载整个文件夹,自动批量检测所有样本 |
🎥 视频检测 | 支持MP4等格式视频识别,实时绘制框与标签 |
📸 摄像头检测 | 可实时调用USB/笔记本摄像头进行缺陷检测演示 |
🖼️ PyQt5界面 | 图形化交互,无需命令行操作,便捷上手 |
二、软件效果演示
为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。
(1)单图片检测演示
用户点击“选择图片”,即可加载本地图像并执行检测:
(2)多文件夹图片检测演示
用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。
(3)视频检测演示
支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:
(4)摄像头检测演示
实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。
(5)保存图片与视频检测结果
用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。
三、模型的训练、评估与推理
YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:
- 高速推理,适合实时检测任务
- 支持Anchor-Free检测
- 支持可扩展的Backbone和Neck结构
- 原生支持ONNX导出与部署
3.1 YOLOv8的基本原理
YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:
- 速度快:推理速度提升明显;
- 准确率高:支持 Anchor-Free 架构;
- 支持分类/检测/分割/姿态多任务;
- 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。
YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。
YOLOv8原理图如下:
3.2 数据集准备与训练
采用 YOLO 格式的数据集结构如下:
dataset/
├── images/
│ ├── train/
│ └── val/
├── labels/
│ ├── train/
│ └── val/
每张图像有对应的 .txt
文件,内容格式为:
4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757
分类包括(可自定义):
3.3. 训练结果评估
训练完成后,将在 runs/detect/train
目录生成结果文件,包括:
results.png
:损失曲线和 mAP 曲线;weights/best.pt
:最佳模型权重;confusion_matrix.png
:混淆矩阵分析图。
若 mAP@0.5 达到 90% 以上,即可用于部署。
在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:
3.4检测结果识别
使用 PyTorch 推理接口加载模型:
import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel
# 加入可信模型结构
safe_globals().add(DetectionModel)
# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)
# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name
# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
预测结果包含类别、置信度、边框坐标等信息。
四.YOLOV8+YOLOUI完整源码打包
本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:
4.1 项目开箱即用
作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。
运行项目只需输入下面命令。
python main.py
读者也可自行配置训练集,或使用打包好的数据集直接训练。
自行训练项目只需输入下面命令。
yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001
4.2 完整源码下载
至项目实录视频下方获取:
https://www.bilibili.com/video/BV19iuoz4Epk/
包含:
📦完整项目源码
📦 预训练模型权重
🗂️ 数据集地址(含标注脚本)
总结
本项目以YOLOv8为核心,结合PyQt5图形化界面,构建了一套完整的太阳能电池片缺陷检测系统,覆盖从数据预处理、模型训练、结果可视化到部署运行的全流程。系统支持多种输入源(图片、视频、摄像头)、实时检测与结果保存,适用于电池片生产线上自动化质检的落地应用。同时,我们也提供了完整的源码、模型权重和数据集支持,助力开发者快速上手,灵活拓展,打造属于自己的AI工业质检工具。如果你希望将YOLO系列模型应用于实际工业项目,本项目将是一个开箱即用的极佳范例。
- 点赞
- 收藏
- 关注作者
评论(0)