机器人SLAM建图与自主导航

举报
梦笔生花 发表于 2025/01/24 23:15:11 2025/01/24
258 0 0
【摘要】 前言这篇文章我开始和大家一起探讨机器人SLAM建图与自主导航 ,在前面的内容中,我们介绍了差速轮式机器人的概念及应用,谈到了使用Gazebo平台搭建仿真环境的教程,主要是利用gmapping slam算法,生成一张二维的仿真环境地图 。我们也会在这篇文章中继续介绍并使用这片二维的仿真环境地图,用于我们的演示。教程SLAM算法的引入(1)SLAM:Simultaneous Localizati...

前言

这篇文章我开始和大家一起探讨机器人SLAM建图与自主导航 ,在前面的内容中,我们介绍了差速轮式机器人的概念及应用,谈到了使用Gazebo平台搭建仿真环境的教程,主要是利用gmapping slam算法,生成一张二维的仿真环境地图 。我们也会在这篇文章中继续介绍并使用这片二维的仿真环境地图,用于我们的演示。

教程

SLAM算法的引入

(1)SLAM:Simultaneous Localization and Mapping,中文是即时定位与地图构建,所谓的SLAM算法准确说是能实现SLAM功能的算法,而不是某一个具体算法。

(2)现在各种机器人研发和商用化非常火 ,所有的自主机器人都绕不开一个问题,即在陌生环境中,需要知道周边是啥样(建图),需要知道我在哪(定位),于是有了SLAM 课题的研究。SLAM在室内机器人,自动驾驶汽车建图,VR/AR穿戴等领域都有广泛的应用。

(3)SLAM算法根据依赖的传感器不同,可以分为激光SLAM和视觉SLAM,前者是激光雷达,后者是能提供深度信息的摄像头,如双目摄像头,红外摄像头等。除此之外,SLAM算法通常还依赖里程计提供距离信息,否则地图很难无缝的拼接起来,很容易跑飞。一个经典的SLAM 流程框架如下,其中回环检测时为了判断机器人有没有来过之前的位置。

整体视觉SLAM的流程图

gmapping算法的基本原理

(1)现在ROS里有一系列SLAM算法包,如:gmapping ,hector(不需要里程计,比较特别),谷歌开源的cartographer(效率高),rtabmap(前面是二维的,这是三维建图)等。

(2)gmapping是基于激光雷达的,需要里程计信息,创建二维格栅地图。其中IMU信息可以没有 。

(3)ros中激光雷达数据消息是 sensor_msgs/LaserScan ,内容如下:

(4)ros中里程计数据消息是 nav_msgs/Odometry 。

(5)gmapping 发布的地图meta数据:

(6)gmapping 发布的地图栅格数据

mbot_navigation

(1)ubuntu20.04 + ros noetic下,安装gmapping和保存地图文件的map_server

sudo apt-get install ros-noetic-gmapping

sudo apt-get install ros-noetic-map-server

// 补充:这是安装hector

sudo apt-get install ros-noetic-hector-slam

(2)创建 mbot_navigation 和相关文件

cd ~/catkin_ws/src

catkin_create_pkg mbot_navigation geometry_msgs move_base_msgs actionlib roscpp rospy

cd mbot_navigation

mkdir launch maps rviz

touch launch/gmapping.launch

(3)调用gmapping算法,只需要写launch文件就行了,不用编码。gmapping.launch

<launch>

    // mbot_gazebo 会通过发/scan topic,传出lidar数据

<arg name="scan_topic" default="scan" />

// gammping一大堆参数,这里都是从他的demo里扣出来的,不用改。

// 如果想用的好,可以尝试修改,甚至改一些代码,这就是算法(调参)工程师!

<node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen" clear_params="true">

    // mbot_gazebo 会通过发/odom topic,传出里程计数据

<param name="odom_frame" value="odom"/>

<param name="map_update_interval" value="5.0"/>

<!-- Set maxUrange < actual maximum range of the Laser -->

<param name="maxRange" value="5.0"/>

<param name="maxUrange" value="4.5"/>

<param name="sigma" value="0.05"/>

<param name="kernelSize" value="1"/>

<param name="lstep" value="0.05"/>

<param name="astep" value="0.05"/>

<param name="iterations" value="5"/>

<param name="lsigma" value="0.075"/>

<param name="ogain" value="3.0"/>

<param name="lskip" value="0"/>

<param name="srr" value="0.01"/>

<param name="srt" value="0.02"/>

<param name="str" value="0.01"/>

<param name="stt" value="0.02"/>

<param name="linearUpdate" value="0.5"/>

<param name="angularUpdate" value="0.436"/>

<param name="temporalUpdate" value="-1.0"/>

<param name="resampleThreshold" value="0.5"/>

<param name="particles" value="80"/>

<param name="xmin" value="-1.0"/>

<param name="ymin" value="-1.0"/>

<param name="xmax" value="1.0"/>

<param name="ymax" value="1.0"/>

<param name="delta" value="0.05"/>

<param name="llsamplerange" value="0.01"/>

<param name="llsamplestep" value="0.01"/>

<param name="lasamplerange" value="0.005"/>

<param name="lasamplestep" value="0.005"/>

<remap from="scan" to="$(arg scan_topic)"/>

</node>

    // 保存的rviz配置文件

<node pkg="rviz" type="rviz" name="rviz" args="-d $(find mbot_navigation)/rviz/map.rviz"/>

</launch>

(4)连同mbot_gazebo,一起编译运行

cd ~/catkin_ws

catkin_make -DCATKIN_WHITELIST_PACKAGES="mbot_navigation;mbot_gazebo"

source devel/setup.bash

// 打开仿真环境

roslaunch mbot_gazebo mbot_gazebo.launch

//再开一个窗口,打开gmapping

roslaunch mbot_navigation gmapping.launch

// 控制机器人行动,进行建图

roslaunch mbot_gazebo mbot_teletop.launch

// 建图完成后,新开窗口,执行map_server,保存生成的地图

cd ~/catkin_ws/src/mbot_navigation/maps

rosrun map_server map_saver -f gmapping_save

最终保存下来的地图

总结

在github上面的访问地址:https://github.com/Jieshoudaxue/ros_senior/tree/main/mbot_navigation/config/move_base

代码示例:

#include <ros/ros.h>

#include <list>

#include <geometry_msgs/Pose.h>

#include <move_base_msgs/MoveBaseAction.h>

#include <actionlib/client/simple_action_client.h>

geometry_msgs::Pose createPose(double px, double py, double pz, double ox, double oy, double oz, double ow) {

geometry_msgs::Pose pose;

pose.position.x = px;

pose.position.y = py;

pose.position.z = pz;

pose.orientation.x = ox;

pose.orientation.y = oy;

pose.orientation.z = oz;

pose.orientation.w = ow;

return pose;

}

int main(int argc, char** argv) {

ros::init(argc, argv, "move_test");

actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> move_base_client("move_base", true);

ROS_INFO("Waiting for move_base action server...");

move_base_client.waitForServer();

ROS_INFO("connected to move base server");

std::vector<geometry_msgs::Pose> target_list;

target_list.push_back(createPose(6.543, 4.779, 0.000, 0.000, 0.000, 0.645, 0.764));

target_list.push_back(createPose(5.543, -4.779, 0.000, 0.000, 0.000, 0.645, 0.764));

target_list.push_back(createPose(-5.543, 4.779, 0.000, 0.000, 0.000, 0.645, 0.764));

target_list.push_back(createPose(-5.543, -4.779, 0.000, 0.000, 0.000, 0.645, 0.764));

for (uint8_t i = 0; i < target_list.size(); i ++) {

ros::Time start_time = ros::Time::now();

ROS_INFO("going to %u goal, position: (%f, %f)", i, target_list[i].position.x, target_list[i].position.y);

move_base_msgs::MoveBaseGoal goal;

goal.target_pose.header.frame_id = "map";

goal.target_pose.header.stamp = ros::Time::now();

goal.target_pose.pose = target_list[i];

move_base_client.sendGoal(goal);

move_base_client.waitForResult();

if (move_base_client.getState() == actionlib::SimpleClientGoalState::SUCCEEDED) {

ros::Duration running_time = ros::Time::now() - start_time;

ROS_INFO("go to %u goal succeeded, running time %f sec", i, running_time.toSec());

} else {

ROS_INFO("goal failed");

}

}

return 0;

}

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

"""

YOLO-specific modules

Usage:

$ python path/to/models/yolo.py --cfg yolov5s.yaml

"""

import argparse

import sys

from copy import deepcopy

from pathlib import Path

FILE = Path(__file__).resolve()

ROOT = FILE.parents[1] # YOLOv5 root directory

if str(ROOT) not in sys.path:

sys.path.append(str(ROOT)) # add ROOT to PATH

# ROOT = ROOT.relative_to(Path.cwd()) # relative

from models.common import *

from models.experimental import *

from utils.autoanchor import check_anchor_order

from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args

from utils.plots import feature_visualization

from utils.torch_utils import fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device, time_sync

try:

import thop # for FLOPs computation

except ImportError:

thop = None

class Detect(nn.Module):

stride = None # strides computed during build

onnx_dynamic = False # ONNX export parameter

def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer

super().__init__()

self.nc = nc # number of classes

self.no = nc + 5 # number of outputs per anchor

self.nl = len(anchors) # number of detection layers

self.na = len(anchors[0]) // 2 # number of anchors

self.grid = [torch.zeros(1)] * self.nl # init grid

self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid

self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)

self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv

self.inplace = inplace # use in-place ops (e.g. slice assignment)

def forward(self, x):

z = [] # inference output

for i in range(self.nl):

x[i] = self.m[i](x[i]) # conv

bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)

x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

if not self.training: # inference

if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:

self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

y = x[i].sigmoid()

if self.inplace:

y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy

y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh

else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953

xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy

wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh

y = torch.cat((xy, wh, y[..., 4:]), -1)

z.append(y.view(bs, -1, self.no))

return x if self.training else (torch.cat(z, 1), x)

def _make_grid(self, nx=20, ny=20, i=0):

d = self.anchors[i].device

if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility

yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')

else:

yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])

grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()

anchor_grid = (self.anchors[i].clone() * self.stride[i]) \

.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()

return grid, anchor_grid

class Model(nn.Module):

def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes

super().__init__()

if isinstance(cfg, dict):

self.yaml = cfg # model dict

else: # is *.yaml

import yaml # for torch hub

self.yaml_file = Path(cfg).name

with open(cfg, encoding='ascii', errors='ignore') as f:

self.yaml = yaml.safe_load(f) # model dict

# Define model

ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels

if nc and nc != self.yaml['nc']:

LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")

self.yaml['nc'] = nc # override yaml value

if anchors:

LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')

self.yaml['anchors'] = round(anchors) # override yaml value

self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist

self.names = [str(i) for i in range(self.yaml['nc'])] # default names

self.inplace = self.yaml.get('inplace', True)

# Build strides, anchors

m = self.model[-1] # Detect()

if isinstance(m, Detect):

s = 256 # 2x min stride

m.inplace = self.inplace

m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward

m.anchors /= m.stride.view(-1, 1, 1)

check_anchor_order(m)

self.stride = m.stride

self._initialize_biases() # only run once

# Init weights, biases

initialize_weights(self)

self.info()

LOGGER.info('')

def forward(self, x, augment=False, profile=False, visualize=False):

if augment:

return self._forward_augment(x) # augmented inference, None

return self._forward_once(x, profile, visualize) # single-scale inference, train

def _forward_augment(self, x):

img_size = x.shape[-2:] # height, width

s = [1, 0.83, 0.67] # scales

f = [None, 3, None] # flips (2-ud, 3-lr)

y = [] # outputs

for si, fi in zip(s, f):

xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))

yi = self._forward_once(xi)[0] # forward

# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save

yi = self._descale_pred(yi, fi, si, img_size)

y.append(yi)

y = self._clip_augmented(y) # clip augmented tails

return torch.cat(y, 1), None # augmented inference, train

def _forward_once(self, x, profile=False, visualize=False):

y, dt = [], [] # outputs

for m in self.model:

if m.f != -1: # if not from previous layer

x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers

if profile:

self._profile_one_layer(m, x, dt)

x = m(x) # run

y.append(x if m.i in self.save else None) # save output

if visualize:

feature_visualization(x, m.type, m.i, save_dir=visualize)

return x

def _descale_pred(self, p, flips, scale, img_size):

# de-scale predictions following augmented inference (inverse operation)

if self.inplace:

p[..., :4] /= scale # de-scale

if flips == 2:

p[..., 1] = img_size[0] - p[..., 1] # de-flip ud

elif flips == 3:

p[..., 0] = img_size[1] - p[..., 0] # de-flip lr

else:

x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale

if flips == 2:

y = img_size[0] - y # de-flip ud

elif flips == 3:

x = img_size[1] - x # de-flip lr

p = torch.cat((x, y, wh, p[..., 4:]), -1)

return p

def _clip_augmented(self, y):

# Clip YOLOv5 augmented inference tails

nl = self.model[-1].nl # number of detection layers (P3-P5)

g = sum(4 ** x for x in range(nl)) # grid points

e = 1 # exclude layer count

i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices

y[0] = y[0][:, :-i] # large

i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices

y[-1] = y[-1][:, i:] # small

return y

def _profile_one_layer(self, m, x, dt):

c = isinstance(m, Detect) # is final layer, copy input as inplace fix

o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs

t = time_sync()

for _ in range(10):

m(x.copy() if c else x)

dt.append((time_sync() - t) * 100)

if m == self.model[0]:

LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")

LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')

if c:

LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")

def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency

# https://arxiv.org/abs/1708.02002 section 3.3

# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.

m = self.model[-1] # Detect() module

for mi, s in zip(m.m, m.stride): # from

b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)

b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)

b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls

mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

def _print_biases(self):

m = self.model[-1] # Detect() module

for mi in m.m: # from

b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)

LOGGER.info(

('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))

# def _print_weights(self):

# for m in self.model.modules():

# if type(m) is Bottleneck:

# LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights

def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers

LOGGER.info('Fusing layers... ')

for m in self.model.modules():

if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):

m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv

delattr(m, 'bn') # remove batchnorm

m.forward = m.forward_fuse # update forward

self.info()

return self

def info(self, verbose=False, img_size=640): # print model information

model_info(self, verbose, img_size)

def _apply(self, fn):

# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers

self = super()._apply(fn)

m = self.model[-1] # Detect()

if isinstance(m, Detect):

m.stride = fn(m.stride)

m.grid = list(map(fn, m.grid))

if isinstance(m.anchor_grid, list):

m.anchor_grid = list(map(fn, m.anchor_grid))

return self

def parse_model(d, ch): # model_dict, input_channels(3)

LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")

anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']

na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors

no = na * (nc + 5) # number of outputs = anchors * (classes + 5)

layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out

for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args

m = eval(m) if isinstance(m, str) else m # eval strings

for j, a in enumerate(args):

try:

args[j] = eval(a) if isinstance(a, str) else a # eval strings

except NameError:

pass

n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain

if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,

BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:

c1, c2 = ch[f], args[0]

if c2 != no: # if not output

c2 = make_divisible(c2 * gw, 8)

args = [c1, c2, *args[1:]]

if m in [BottleneckCSP, C3, C3TR, C3Ghost]:

args.insert(2, n) # number of repeats

n = 1

elif m is nn.BatchNorm2d:

args = [ch[f]]

elif m is Concat:

c2 = sum(ch[x] for x in f)

elif m is Detect:

args.append([ch[x] for x in f])

if isinstance(args[1], int): # number of anchors

args[1] = [list(range(args[1] * 2))] * len(f)

elif m is Contract:

c2 = ch[f] * args[0] ** 2

elif m is Expand:

c2 = ch[f] // args[0] ** 2

else:

c2 = ch[f]

m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module

t = str(m)[8:-2].replace('__main__.', '') # module type

np = sum(x.numel() for x in m_.parameters()) # number params

m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params

LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print

save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist

layers.append(m_)

if i == 0:

ch = []

ch.append(c2)

return nn.Sequential(*layers), sorted(save)

if __name__ == '__main__':

parser = argparse.ArgumentParser()

parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')

parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')

parser.add_argument('--profile', action='store_true', help='profile model speed')

parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')

opt = parser.parse_args()

opt.cfg = check_yaml(opt.cfg) # check YAML

print_args(FILE.stem, opt)

device = select_device(opt.device)

# Create model

model = Model(opt.cfg).to(device)

model.train()

# Profile

if opt.profile:

img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)

y = model(img, profile=True)

# Test all models

if opt.test:

for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):

try:

_ = Model(cfg)

except Exception as e:

print(f'Error in {cfg}: {e}')

# Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)

# from torch.utils.tensorboard import SummaryWriter

# tb_writer = SummaryWriter('.')

# LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")

# tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph

 

【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

作者其他文章

评论(0

抱歉,系统识别当前为高风险访问,暂不支持该操作

    全部回复

    上滑加载中

    设置昵称

    在此一键设置昵称,即可参与社区互动!

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。