OCR 通用端到端模型GOT,迈向OCR2.0的新时代

举报
AI浩 发表于 2024/09/15 07:40:55 2024/09/15
【摘要】 摘要在人工智能领域,光学字符识别(OCR)技术已经取得了显著的进展。随着技术的不断进步,我们正迈向OCR 2.0时代。本文将介绍由Vary团队开发的通用端到端模型GOT,这一模型在OCR领域具有革命性的潜力。 论文概览论文标题:GOT: Towards OCR-2.0发布平台:arXiv链接:arXiv.org 模型特点GOT模型是首个迈向OCR 2.0时代的通用端到端模型,它在多个方面展...

摘要

在人工智能领域,光学字符识别(OCR)技术已经取得了显著的进展。随着技术的不断进步,我们正迈向OCR 2.0时代。本文将介绍由Vary团队开发的通用端到端模型GOT,这一模型在OCR领域具有革命性的潜力。

论文概览

  • 论文标题:GOT: Towards OCR-2.0
  • 发布平台:arXiv
  • 链接arXiv.org
    在这里插入图片描述

模型特点

GOT模型是首个迈向OCR 2.0时代的通用端到端模型,它在多个方面展现了其先进性:

  1. 多任务支持:GOT模型支持多种OCR任务,包括场景文本OCR、文档OCR、细粒度OCR以及更通用的OCR任务。
  2. 输出格式多样:除了支持纯文本输出,GOT还能输出格式化文本,如Markdown格式,增强了文本的可读性和可编辑性。
  3. 结构优化:采用vision encoder + input embedding layer + decoder的架构,其中encoder部分采用带local attention的VITDet架构,有效管理显存使用。
    在这里插入图片描述

训练方法

GOT模型的训练分为三个阶段:

  1. 第一阶段:高效预训练encoder,使用小型OPT-125M作为decoder,快速引入大量数据。
  2. 第二阶段:联合训练encoder-decoder,使用Qwen团队预训练的Qwen0.5B,适当增大decoder以适应OCR-2.0的知识需求。
  3. 第三阶段:锁定encoder,加强decoder以适配更多OCR应用场景,如支持坐标或颜色引导的细粒度OCR,动态分辨率OCR技术,多页OCR技术。
    在这里插入图片描述

数据工程

研究团队在数据工程方面投入巨大,学习并使用了多种数据渲染工具,包括Latex、Mathpix-markdown-it、Matplotlib、Tikz、Verovio、Pyecharts等,以构造多样化的数据。

项目地址

对GOT模型感兴趣的研究者和开发者可以通过以下链接访问项目代码:
GitHub - Ucas-HaoranWei/GOT-OCR2.0

安装

基础环境cuda11.8+torch2.0.1

克隆仓库并导航到GOT文件夹

git clone https://github.com/Ucas-HaoranWei/GOT-OCR2.0.git 
cd 'the GOT folder'

安装包

conda create -n got python=3.10 -y
conda activate got
pip install -e .

安装 Flash-Attention

pip install ninja
pip install flash-attn --no-build-isolation

GOT 权重

演示

  1. 普通文本OCR:
python3 GOT/demo/run_ocr_2.0.py  --model-name  /GOT_weights/  --image-file  /an/image/file.png  --type ocr
  1. 格式文本OCR:
python3 GOT/demo/run_ocr_2.0.py  --model-name  /GOT_weights/  --image-file  /an/image/file.png  --type format
  1. 细粒度OCR:
python3 GOT/demo/run_ocr_2.0.py  --model-name  /GOT_weights/  --image-file  /an/image/file.png  --type format/ocr --box [x1,y1,x2,y2]
python3 GOT/demo/run_ocr_2.0.py  --model-name  /GOT_weights/  --image-file  /an/image/file.png  --type format/ocr --color red/green/blue
  1. 多裁剪OCR:
python3 GOT/demo/run_ocr_2.0_crop.py  --model-name  /GOT_weights/ --image-file  /an/image/file.png 
  1. 多页OCR (图像路径包含多个.png文件):
python3 GOT/demo/run_ocr_2.0_crop.py  --model-name  /GOT_weights/ --image-file  /images/path/  --multi-page
  1. 渲染格式化OCR结果:
python3 GOT/demo/run_ocr_2.0.py  --model-name  /GOT_weights/  --image-file  /an/image/file.png  --type format --render

注意:
渲染结果可以在/results/demo.html中找到。请打开demo.html查看结果。

训练

  1. 训练样本可以在此链接找到。注意,在’conversations’-‘human’-‘value’中的’<image>'是必要的!
  2. 此代码库仅支持在我们GOT权重上的后训练(第二/第三阶段)。
  3. 如果你想从我们论文中描述的第一阶段训练,你需要这个仓库
deepspeed   /GOT-OCR-2.0-master/GOT/train/train_GOT.py \
 --deepspeed /GOT-OCR-2.0-master/zero_config/zero2.json    --model_name_or_path /GOT_weights/ \
 --use_im_start_end True   \
 --bf16 True   \
 --gradient_accumulation_steps 2    \
 --evaluation_strategy "no"   \
 --save_strategy "steps"  \
 --save_steps 200   \
 --save_total_limit 1   \
 --weight_decay 0.    \
 --warmup_ratio 0.001     \
 --lr_scheduler_type "cosine"    \
 --logging_steps 1    \
 --tf32 True     \
 --model_max_length 8192    \
 --gradient_checkpointing True   \
 --dataloader_num_workers 8    \
 --report_to none  \
 --per_device_train_batch_size 2    \
 --num_train_epochs 1 \
 --learning_rate 2e-5   \
 --datasets pdf-ocr+scence \
 --output_dir /your/output.path

注意:

  1. 更改constant.py中相应的数据信息。
  2. 更改conversation_dataset_qwen.py中第37行为你的数据名称。

评估

  1. 使用FoxOneChart基准,其他基准可以在权重下载链接中找到。
  2. 评估代码可以在GOT/eval中找到。
  3. 你可以使用evaluate_GOT.py运行评估。如果你有8个GPU,–num-chunks可以设置为8。
python3 GOT/eval/evaluate_GOT.py --model-name /GOT_weights/ --gtfile_path xxxx.json --image_path  /image/path/ --out_path /data/eval_results/GOT_mathpix_test/ --num-chunks 8 --datatype OCR
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。