Ascend C算子性能优化实用技巧02——内存优化
Ascend C算子性能优化实用技巧02——内存优化
Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,兼具开发效率和运行性能。使用Ascend C,开发者可以基于昇腾AI硬件,高效的实现自定义的创新算法。
目前已经有越来越多的开发者使用Ascend C,我们将通过几期“Ascend C算子性能优化”专题分享,围绕开发者最为关心的算子性能优化环节,介绍Ascend C算子常用的优化技巧,帮助开发者自主构建出更优性能的算子。专题内容将围绕流水优化、搬运优化、内存优化、API使用优化以及Tiling优化等优化技巧,从方案讲解、优化案例、性能对比等多角度展开介绍。
上期内容分享了《Ascend C算子性能优化实用技巧01——流水优化》,本期您将从内存优化角度,了解到一些实用的内存优化技巧:
- l通过Unified Buffer融合实现连续vector计算
- 通过L0C Buffer数据暂存实现高效的矩阵乘结果累加
- 较小矩阵长驻L1 Buffer,仅分次搬运较大矩阵
- 通过BT Buffer实现高效的bias计算
- 通过FP Buffer存放量化参数实现高效随路量化
1 昇腾AI处理器存储单元简介
AI处理器中的计算资源要想发挥强劲算力,必要条件是保证输入数据能够及时准确地出现在计算单元中,需要精心设计存储系统,保证计算单元所需的数据供应。
昇腾AI处理器中的AI Core包含多级内部存储,AI Core需要把外部存储中的数据加载到内部存储中,才能完成相应的计算。AI Core的主要内部存储包括:
- L1 Buffer:L1缓冲区,通用内部存储,是AI Core内比较大的一块数据中转区,可暂存AI Core中需要反复使用的一些数据从而减少从总线读写的次数。
- L0A Buffer / L0B Buffer:Cube指令的输入。
- L0C Buffer:Cube指令的输出,但进行累加计算的时候,也是输入的一部分。
- Unified Buffer:统一缓冲区,向量和标量计算的输入和输出。
为了配合AI Core中的数据传输和搬运,AI Core中还包含MTE(Memory Transfer Engine,存储转换引擎)搬运单元,在搬运过程中可执行随路数据格式/类型转换。
图 1AI Core架构图
除L1 Buffer(L1缓冲区),L0 Buffer(L0缓冲区),Unified Buffer(统一缓冲区)这些基本的存储单元外,某些采用AI Core分离架构的昇腾AI处理器还会增加BT Buffer和FP Buffer这两个Buffer。AI Core分离架构将AI Core拆成矩阵计算(AI Cube,AIC)和向量计算(AI Vector,AIV)两个独立的核,每个核都有自己的Scalar单元,能独立加载自己的代码段,从而实现矩阵计算与向量计算的解耦,在系统软件的统一调度下互相配合达到计算效率优化的效果。
- BT Buffer:BiasTable Buffer,用于存放Bias。
- FP Buffer:Fixpipe Buffer,用于存放量化参数、Relu参数等。
图 2AI Core架构图(分离架构)
2 通过UB Buffer融合实现连续vector计算
算子实现中涉及多次vector计算,且前一次计算输出是后一次计算输入的情况下,可将前一次计算输出暂存在UB(Unified Buffer)上直接作为下一次计算的输入,不需要将前一次的计算输出从UB搬运到GM后再从GM搬运到UB。这种UB Buffer融合的方式可以减少搬入搬出次数,实现连续vector计算,提升内存使用效率。数据流图对比如下:
图2-1 数据流图对比
举个例子,以下算子的计算逻辑为进行Exp计算后再进行Abs计算。计算过程中先把源操作数从GM搬运到UB进行Exp计算,Exp计算完成后将Exp的结果从UB搬运到GM;再从GM中把Exp的结果搬运到UB上作为Abs计算的输入,Abs计算完成后将目的操作数结果从UB搬运到GM。整个过程从GM搬进搬出共4次。当需要进行的vector计算为n次时,从GM搬进搬出共需要2n次。
class KernelSample {
public:
__aicore__ inline KernelSample() {}
__aicore__ inline void Init(__gm__ uint8_t* src0Gm, __gm__ uint8_t* dstGm)
{
src0Global.SetGlobalBuffer((__gm__ float*)src0Gm);
dstGlobal.SetGlobalBuffer((__gm__ float*)dstGm);
pipe.InitBuffer(inQueueSrc0, 1, 1024 * sizeof(float));
pipe.InitBuffer(outQueueDst, 1, 1024 * sizeof(float));
}
__aicore__ inline void Process()
{
CopyIn();
Compute();
CopyOut();
CopyIn1();
Compute1();
CopyOut1();
}
private:
__aicore__ inline void CopyIn()
{
LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
DataCopy(src0Local, src0Global, 1024);
inQueueSrc0.EnQue(src0Local);
}
__aicore__ inline void Compute()
{
LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
LocalTensor<float> dstLocal = outQueueDst.AllocTensor<float>();
Exp(dstLocal, src0Local, 1024);
outQueueDst.EnQue<float>(dstLocal);
inQueueSrc0.FreeTensor(src0Local);
}
__aicore__ inline void CopyOut()
{
LocalTensor<float> dstLocal = outQueueDst.DeQue<float>();
DataCopy(dstGlobal, dstLocal, 1024);
outQueueDst.FreeTensor(dstLocal);
}
__aicore__ inline void CopyIn1()
{
PipeBarrier<PIPE_ALL>();
LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
DataCopy(src0Local, dstGlobal, 1024);
inQueueSrc0.EnQue(src0Local);
}
__aicore__ inline void Compute1()
{
LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
LocalTensor<float> dstLocal = outQueueDst.AllocTensor<float>();
Abs(dstLocal, src0Local, 1024);
outQueueDst.EnQue<float>(dstLocal);
inQueueSrc0.FreeTensor(src0Local);
}
__aicore__ inline void CopyOut1()
{
LocalTensor<float> dstLocal = outQueueDst.DeQue<float>();
DataCopy(dstGlobal, dstLocal, 1024);
outQueueDst.FreeTensor(dstLocal);
}
private:
TPipe pipe;
TQue<QuePosition::VECIN, 1> inQueueSrc0;
TQue<QuePosition::VECOUT, 1> outQueueDst;
GlobalTensor<float> src0Global, dstGlobal;
};
使用UB Buffer融合方式后,在UB上进行连续vector计算时,前一次的结果可直接作为后一次计算的输入,继续在UB上进行计算,不需要中间的搬进搬出,只需在开始计算时将源操作数搬运到UB,以及全部计算结束后将最终结果从UB搬运到GM,共2次搬进搬出。
class KernelSample {
public:
__aicore__ inline KernelSample() {}
__aicore__ inline void Init(__gm__ uint8_t* src0Gm, __gm__ uint8_t* dstGm)
{
src0Global.SetGlobalBuffer((__gm__ float*)src0Gm);
dstGlobal.SetGlobalBuffer((__gm__ float*)dstGm);
pipe.InitBuffer(inQueueSrc0, 1, 1024 * sizeof(float));
pipe.InitBuffer(outQueueDst, 1, 1024 * sizeof(float));
}
__aicore__ inline void Process()
{
CopyIn();
Compute();
CopyOut();
}
private:
__aicore__ inline void CopyIn()
{
LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
DataCopy(src0Local, src0Global, 1024);
inQueueSrc0.EnQue(src0Local);
}
__aicore__ inline void Compute()
{
LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
LocalTensor<float> dstLocal = outQueueDst.AllocTensor<float>();
Exp(dstLocal, src0Local, 1024);
Abs(dstLocal, dstLocal, 1024);
outQueueDst.EnQue<float>(dstLocal);
inQueueSrc0.FreeTensor(src0Local);
}
__aicore__ inline void CopyOut()
{
LocalTensor<float> dstLocal = outQueueDst.DeQue<float>();
DataCopy(dstGlobal, dstLocal, 1024);
outQueueDst.FreeTensor(dstLocal);
}
private:
TPipe pipe;
TQue<QuePosition::VECIN, 1> inQueueSrc0;
TQue<QuePosition::VECOUT, 1> outQueueDst;
GlobalTensor<float> src0Global, dstGlobal;
};
3 通过L0C数据暂存实现高效的矩阵乘结果累加
算子实现中对矩阵乘的结果进行累加时(比如矩阵A1 * B1 + A2 * B2...结果的累加),可将前一次矩阵乘的结果暂存在CO1(L0C)上,调用Mmad接口实现矩阵乘结果累加。相比于每次矩阵乘的结果从CO1搬运到GM上,再搬运到UB上进行累加计算,可减少数据搬运的次数,提升内存使用效率。
图3-1 优化前数据流图
图3-2 优化后数据流图
优化前,算子进行2次矩阵乘结果累加的过程如下:
- 将前一次矩阵乘的计算结果从CO1搬运到workspace上,再从workspace搬运到UB上;
- 下一次矩阵乘计算重复完成上述步骤将结果搬运到UB上;
- 在UB上将2次矩阵乘的结果相加。
当需要累加n次矩阵乘时,分别增加了n次CO1->workspace、workspace->UB搬运以及n次Add运算。
...
// 该样例仅做示例说明,非完整代码,省略了部分同步控制代码
public:
__aicore__ inline KernelSample()
{
aSize = m * k;
bSize = k * n;
cSize = m * n;
}
__aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c)
{
aGM.SetGlobalBuffer((__gm__ half *)a);
bGM.SetGlobalBuffer((__gm__ half *)b);
cGM.SetGlobalBuffer((__gm__ float *)c);
pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
pipe.InitBuffer(inQueueSrc0, 1, cSize * sizeof(float));
pipe.InitBuffer(inQueueSrc1, 1, cSize * sizeof(float));
pipe.InitBuffer(outQueueDst, 1, cSize * sizeof(float));
}
__aicore__ inline void Process()
{
// 第一次矩阵乘计算
CopyIn();
SplitA();
SplitB();
Compute();
// 将第一次矩阵乘的结果搬出
CopyOut();
// 将第一次矩阵乘的结果搬运到UB
CopyIn1();
// 第二次矩阵乘计算
Compute1();
// 将第一次矩阵乘的结果搬出
CopyOut1();
// 将第二次矩阵乘的结果搬运到UB
CopyIn1();
// 将两次矩阵乘的结果累加
Compute2();
CopyOut2();
}
private:
__aicore__ inline void CopyIn()
{
LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
Nd2NzParams dataCopyA1Params;
dataCopyA1Params.ndNum = 1;
dataCopyA1Params.nValue = m;
dataCopyA1Params.dValue = k;
dataCopyA1Params.srcNdMatrixStride = 0;
dataCopyA1Params.srcDValue = k;
dataCopyA1Params.dstNzC0Stride = m;
dataCopyA1Params.dstNzNStride = 1;
dataCopyA1Params.dstNzMatrixStride = 0;
DataCopy(a1Local, aGM, dataCopyA1Params);
Nd2NzParams dataCopyB1Params;
dataCopyB1Params.ndNum = 1;
dataCopyB1Params.nValue = k;
dataCopyB1Params.dValue = n;
dataCopyB1Params.srcNdMatrixStride = 0;
dataCopyB1Params.srcDValue = n;
dataCopyB1Params.dstNzC0Stride = k;
dataCopyB1Params.dstNzNStride = 1;
dataCopyB1Params.dstNzMatrixStride = 0;
DataCopy(b1Local, bGM, dataCopyB1Params);
inQueueA1.EnQue<half>(a1Local);
inQueueB1.EnQue<half>(b1Local);
}
__aicore__ inline void SplitA()
{
...
}
__aicore__ inline void SplitB()
{
...
}
__aicore__ inline void Compute()
{
LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
MmadParams mmadParams;
mmadParams.m = m;
mmadParams.n = n;
mmadParams.k = k;
// 矩阵乘
Mmad(c1Local, a2Local, b2Local, mmadParams);
outQueueCO1.EnQue<float>(c1Local);
inQueueA2.EnQue<half>(a2Local);
inQueueB2.EnQue<half>(b2Local);
}
__aicore__ inline void CopyOut()
{
LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
GM_ADDR usrWorkspace = AscendC::GetUserWorkspace(workspace);
xGm.SetGlobalBuffer((__gm__ float *)(usrWorkspace));
FixpipeParamsV220 fixpipeParams;
fixpipeParams.nSize = n;
fixpipeParams.mSize = m;
fixpipeParams.srcStride = m;
fixpipeParams.dstStride = n;
fixpipeParams.ndNum = 1;
fixpipeParams.srcNdStride = 0;
fixpipeParams.dstNdStride = 0;
// 将矩阵乘的计算结果从CO1搬运到workspace
Fixpipe(xGm, c1Local, fixpipeParams);
outQueueCO1.EnQue<float>(c1Local);
}
__aicore__ inline void CopyIn1()
{
PipeBarrier<PIPE_ALL>();
LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
// 将矩阵乘的计算结果从workspace搬运到UB
DataCopy(src0Local, xGm, cSize);
inQueueSrc0.EnQue<float>(src0Local);
}
__aicore__ inline void Compute1()
{
LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
MmadParams mmadParams;
mmadParams.m = m;
mmadParams.n = n;
mmadParams.k = k;
// 矩阵乘
Mmad(c1Local, a2Local, b2Local, mmadParams);
outQueueCO1.EnQue<float>(c1Local);
inQueueA2.FreeTensor(a2Local);
inQueueB2.FreeTensor(b2Local);
}
__aicore__ inline void CopyOut1()
{
LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
FixpipeParamsV220 fixpipeParams;
fixpipeParams.nSize = n;
fixpipeParams.mSize = m;
fixpipeParams.srcStride = m;
fixpipeParams.dstStride = n;
fixpipeParams.ndNum = 1;
fixpipeParams.srcNdStride = 0;
fixpipeParams.dstNdStride = 0;
// 将矩阵乘的计算结果从CO1搬运到workspace
Fixpipe(xGm, c1Local, fixpipeParams);
outQueueCO1.FreeTensor(c1Local);
}
__aicore__ inline void CopyIn2()
{
PipeBarrier<PIPE_ALL>();
LocalTensor<float> src1Local = inQueueSrc1.AllocTensor<float>();
// 将矩阵乘的计算结果从workspace搬运到UB
DataCopy(src1Local, xGm, cSize);
inQueueSrc1.EnQue<float>(src1Local);
}
__aicore__ inline void Compute2()
{
LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
LocalTensor<float> src1Local = inQueueSrc1.DeQue<float>();
LocalTensor<float> dstLocal = outQueueDst.AllocTensor<float>();
// 两次矩阵乘的结果相加
Add(dstLocal, src0Local, src1Local, cSize);
outQueueDst.EnQue<float>(dstLocal);
inQueueSrc0.FreeTensor(src0Local);
inQueueSrc1.FreeTensor(src1Local);
}
__aicore__ inline void CopyOut2()
{
...
}
private:
TPipe pipe;
TQue<QuePosition::A1, 1> inQueueA1;
TQue<QuePosition::A2, 1> inQueueA2;
TQue<QuePosition::B1, 1> inQueueB1;
TQue<QuePosition::B2, 1> inQueueB2;
TQue<QuePosition::CO1, 1> outQueueCO1;
TQue<QuePosition::VECIN, 1> inQueueSrc0;
TQue<QuePosition::VECIN, 1> inQueueSrc1;
TQue<QuePosition::VECOUT, 1> outQueueDst;
GlobalTensor<half> aGM;
GlobalTensor<half> bGM;
GlobalTensor<dst_T> cGM;
uint16_t m = 32, k = 32, n = 32;
uint16_t aSize, bSize, cSize;
...
通过优化,该算子对矩阵乘结果累加时,可将前一次矩阵乘的结果暂存在L0C上,通过Mmad接口参数cmatrixInitVal和cmatrixSource配置C矩阵的初始值 ,只调用2次Mmad接口实现2次矩阵乘结果累加。
...
// 该样例仅做示例说明,非完整代码,省略了部分同步控制代码
public:
__aicore__ inline KernelSample()
{
aSize = m * k;
bSize = k * n;
cSize = m * n;
}
__aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c)
{
aGM.SetGlobalBuffer((__gm__ half *)a);
bGM.SetGlobalBuffer((__gm__ half *)b);
cGM.SetGlobalBuffer((__gm__ float *)c);
pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
}
__aicore__ inline void Process()
{
CopyIn();
SplitA();
SplitB();
Compute();
CopyOut();
}
private:
__aicore__ inline void CopyIn()
{
LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
Nd2NzParams dataCopyA1Params;
dataCopyA1Params.ndNum = 1;
dataCopyA1Params.nValue = m;
dataCopyA1Params.dValue = k;
dataCopyA1Params.srcNdMatrixStride = 0;
dataCopyA1Params.srcDValue = k;
dataCopyA1Params.dstNzC0Stride = m;
dataCopyA1Params.dstNzNStride = 1;
dataCopyA1Params.dstNzMatrixStride = 0;
DataCopy(a1Local, aGM, dataCopyA1Params);
Nd2NzParams dataCopyB1Params;
dataCopyB1Params.ndNum = 1;
dataCopyB1Params.nValue = k;
dataCopyB1Params.dValue = n;
dataCopyB1Params.srcNdMatrixStride = 0;
dataCopyB1Params.srcDValue = n;
dataCopyB1Params.dstNzC0Stride = k;
dataCopyB1Params.dstNzNStride = 1;
dataCopyB1Params.dstNzMatrixStride = 0;
DataCopy(b1Local, bGM, dataCopyB1Params);
inQueueA1.EnQue(a1Local);
inQueueB1.EnQue(b1Local);
}
__aicore__ inline void SplitA()
{
...
}
__aicore__ inline void SplitB()
{
...
}
__aicore__ inline void Compute()
{
LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
MmadParams mmadParams;
mmadParams.m = m;
mmadParams.n = n;
mmadParams.k = k;
// 第一次矩阵乘
Mmad(c1Local, a2Local, b2Local, mmadParams);
PipeBarrier<PIPE_M>();
// 第二次矩阵乘累加第一次矩阵乘的结果
mmadParams.cmatrixInitVal = false;
Mmad(c1Local, a2Local, b2Local, c1Local, mmadParams);
outQueueCO1.EnQue<float>(c1Local);
inQueueA2.FreeTensor(a2Local);
inQueueB2.FreeTensor(b2Local);
}
__aicore__ inline void CopyOut()
{
LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
FixpipeParamsV220 fixpipeParams;
fixpipeParams.nSize = n;
fixpipeParams.mSize = m;
fixpipeParams.srcStride = m;
fixpipeParams.dstStride = n;
fixpipeParams.ndNum = 1;
fixpipeParams.srcNdStride = 0;
fixpipeParams.dstNdStride = 0;
Fixpipe(cGM, c1Local, fixpipeParams);
outQueueCO1.FreeTensor(c1Local);
}
private:
TPipe pipe;
TQue<QuePosition::A1, 1> inQueueA1;
TQue<QuePosition::A2, 1> inQueueA2;
TQue<QuePosition::B1, 1> inQueueB1;
TQue<QuePosition::B2, 1> inQueueB2;
TQue<QuePosition::CO1, 1> outQueueCO1;
GlobalTensor<half> aGM;
GlobalTensor<half> bGM;
GlobalTensor<dst_T> cGM;
uint16_t m = 32, k = 32, n = 32;
uint16_t aSize, bSize, cSize;
4 较小矩阵长驻L1 Buffer,仅分次搬运较大矩阵
在进行cube计算时,当L1无法全载左右矩阵时,可以让较小的矩阵长驻于L1上,只分次搬运较大的矩阵,减少搬运次数。
假设L1的大小为512K,左矩阵和右矩阵的大小分别为992K、16K,数据类型为half,单次无法将左右矩阵全部载入L1中。开发者规划的切分策略为:不切K轴,将左矩阵平均分成两块A1、A2,shape大小均为[992, 256];将右矩阵平均分成两块,shape大小均为[256, 16]。计算时的加载顺序如下:先加载A1矩阵至L1,将B1、B2依次加载并计算;然后再加载A2至L1,将B1、B2依次加载并计算。
图4-1 优化前切分策略图示
...
public:
__aicore__ inline KernelSample()
{
aSize = baseM * baseK;
bSize = baseK * baseN;
cSize = m * n;
}
__aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c)
{
aGM.SetGlobalBuffer((__gm__ half *)a);
bGM.SetGlobalBuffer((__gm__ half *)b);
cGM.SetGlobalBuffer((__gm__ float *)c);
pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
}
__aicore__ inline void Process()
{
for (uint32_t i = 0; i < 2; i++) {
CopyInA1(i);
SplitA();
for (uint32_t j = 0; j < 2; j++) {
CopyInB1(j);
SplitB();
Compute(i, j);
}
}
CopyOut();
}
private:
__aicore__ inline void CopyInA1(uint32_t i)
{
LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
// 左矩阵a1/a2分块载入A1
Nd2NzParams dataCopyA1Params;
dataCopyA1Params.ndNum = 1;
dataCopyA1Params.nValue = baseM;
dataCopyA1Params.dValue = baseK;
dataCopyA1Params.srcNdMatrixStride = 0;
dataCopyA1Params.srcDValue = baseK;
dataCopyA1Params.dstNzC0Stride = baseM;
dataCopyA1Params.dstNzNStride = 1;
dataCopyA1Params.dstNzMatrixStride = 0;
DataCopy(a1Local, aGM[i * baseM * baseK], dataCopyA1Params);
inQueueA1.EnQue(a1Local);
}
__aicore__ inline void SplitA()
{
LocalTensor<half> a1Local = inQueueA1.DeQue<half>();
LocalTensor<half> a2Local = inQueueA2.AllocTensor<half>();
// 左矩阵a1/a2分块从A1->A2
LoadData2dParams loadL0AParams;
loadL0AParams.repeatTimes = baseM * baseK * sizeof(half) / 512;
loadL0AParams.srcStride = 1;
loadL0AParams.dstGap = 0;
LoadData(a2Local, a1Local, loadL0AParams);
inQueueA2.EnQue(a2Local);
inQueueA1.FreeTensor(a1Local);
}
__aicore__ inline void CopyInB1(uint32_t j)
{
LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
// 右矩阵分块b1/b2载入B1
Nd2NzParams dataCopyB1Params;
dataCopyB1Params.ndNum = 1;
dataCopyB1Params.nValue = baseK;
dataCopyB1Params.dValue = baseN;
dataCopyB1Params.srcNdMatrixStride = 0;
dataCopyB1Params.srcDValue = n;
dataCopyB1Params.dstNzC0Stride = baseK;
dataCopyB1Params.dstNzNStride = 1;
dataCopyB1Params.dstNzMatrixStride = 0;
DataCopy(b1Local, bGM[j * baseN], dataCopyB1Params);
inQueueB1.EnQue(b1Local);
}
__aicore__ inline void SplitB()
{
LocalTensor<half> b1Local = inQueueB1.DeQue<half>();
LocalTensor<half> b2Local = inQueueB2.AllocTensor<half>();
// 右矩阵分块b1/b2从B1->B2
LoadData2dTransposeParams loadL0BParams;
loadL0BParams.startIndex = 0;
loadL0BParams.repeatTimes = baseK / nBlockSize;
loadL0BParams.srcStride = 1;
loadL0BParams.dstGap = 1;
LoadDataWithTranspose(b2Local, b1Local, loadL0BParams);
inQueueB2.EnQue(b2Local);
inQueueB1.FreeTensor(b1Local);
}
__aicore__ inline void Compute(uint32_t i, uint32_t j)
{
LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
// 矩阵乘
mmadParams.m = baseM;
mmadParams.n = baseN;
mmadParams.k = baseK;
Mmad(c1Local[i * baseM * baseN + j * m * baseN], a2Local, b2Local, mmadParams);
outQueueCO1.EnQue<float>(c1Local);
inQueueA2.FreeTensor(a2Local);
inQueueB2.FreeTensor(b2Local);
}
__aicore__ inline void CopyOut()
{
...
}
private:
TPipe pipe;
TQue<QuePosition::A1, 1> inQueueA1;
TQue<QuePosition::A2, 1> inQueueA2;
TQue<QuePosition::B1, 1> inQueueB1;
TQue<QuePosition::B2, 1> inQueueB2;
TQue<QuePosition::CO1, 1> outQueueCO1;
GlobalTensor<half> aGM;
GlobalTensor<half> bGM;
GlobalTensor<dst_T> cGM;
uint16_t m = 1984, k = 256, n = 32;
uint16_t baseM = 992, baseK = 256, baseN = 16;
uint16_t aSize, bSize, cSize;
uint16_t nBlockSize = 16;
...
经过优化,将较小的右矩阵一次性搬入L1并长存于L1上,循环内不断搬运A矩阵,当循环次数为2时,共需要3次搬运。
...
public:
__aicore__ inline KernelSample()
{
aSize = baseM * baseK;
bSize = baseK * n;
cSize = m * n;
}
__aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c)
{
aGM.SetGlobalBuffer((__gm__ half *)a);
bGM.SetGlobalBuffer((__gm__ half *)b);
cGM.SetGlobalBuffer((__gm__ float *)c);
pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
}
__aicore__ inline void Process()
{
CopyInB1();
SplitB();
for (uint32_t i = 0; i < 2; i++) {
CopyInA1(i);
SplitA();
for (uint32_t j = 0; j < 2; j++) {
Compute(i, j);
}
}
CopyOut();
}
private:
__aicore__ inline void CopyInB1()
{
LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
// 右矩阵全载入B1
Nd2NzParams dataCopyB1Params;
dataCopyB1Params.ndNum = 1;
dataCopyB1Params.nValue = baseK;
dataCopyB1Params.dValue = n;
dataCopyB1Params.srcNdMatrixStride = 0;
dataCopyB1Params.srcDValue = n;
dataCopyB1Params.dstNzC0Stride = baseK;
dataCopyB1Params.dstNzNStride = 1;
dataCopyB1Params.dstNzMatrixStride = 0;
DataCopy(b1Local, bGM, dataCopyB1Params);
inQueueB1.EnQue(b1Local);
}
__aicore__ inline void SplitB()
{
LocalTensor<half> b1Local = inQueueB1.DeQue<half>();
LocalTensor<half> b2Local = inQueueB2.AllocTensor<half>();
// 右矩阵全部从B1->B2
LoadData2dTransposeParams loadL0BParams;
loadL0BParams.startIndex = 0;
loadL0BParams.repeatTimes = baseK / nBlockSize;
loadL0BParams.srcStride = 1;
loadL0BParams.dstGap = 1;
for (int blockNum = 0; blockNum < (n / nBlockSize); blockNum++) {
LoadDataWithTranspose(b2Local[blockNum * 16 * nBlockSize], b1Local[blockNum * baseK * nBlockSize], loadL0BParams);
}
inQueueB2.EnQue(b2Local);
inQueueB1.FreeTensor(b1Local);
}
__aicore__ inline void CopyInA1(uint32_t i)
{
LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
// 左矩阵a1/a2分块载入A1
Nd2NzParams dataCopyA1Params;
dataCopyA1Params.ndNum = 1;
dataCopyA1Params.nValue = baseM;
dataCopyA1Params.dValue = baseK;
dataCopyA1Params.srcNdMatrixStride = 0;
dataCopyA1Params.srcDValue = baseK;
dataCopyA1Params.dstNzC0Stride = baseM;
dataCopyA1Params.dstNzNStride = 1;
dataCopyA1Params.dstNzMatrixStride = 0;
DataCopy(a1Local, aGM[i * baseM * baseK], dataCopyA1Params);
inQueueA1.EnQue(a1Local);
}
__aicore__ inline void SplitA()
{
LocalTensor<half> a1Local = inQueueA1.DeQue<half>();
LocalTensor<half> a2Local = inQueueA2.AllocTensor<half>();
// 左矩阵a1/a2分块从A1->A2
LoadData2dParams loadL0AParams;
loadL0AParams.repeatTimes = baseM * baseK * sizeof(half) / 512;
loadL0AParams.srcStride = 1;
loadL0AParams.dstGap = 0;
LoadData(a2Local, a1Local, loadL0AParams);
inQueueA2.EnQue(a2Local);
inQueueA1.FreeTensor(a1Local);
}
__aicore__ inline void Compute(uint32_t i, uint32_t j)
{
LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
// 矩阵乘
mmadParams.m = baseM;
mmadParams.n = baseN;
mmadParams.k = baseK;
Mmad(c1Local[i * baseM * baseN + j * m * baseN], a2Local, b2Local, mmadParams);
outQueueCO1.EnQue<float>(c1Local);
inQueueA2.FreeTensor(a2Local);
inQueueB2.FreeTensor(b2Local);
}
__aicore__ inline void CopyOut()
{
...
}
private:
TPipe pipe;
TQue<QuePosition::A1, 1> inQueueA1;
TQue<QuePosition::A2, 1> inQueueA2;
TQue<QuePosition::B1, 1> inQueueB1;
TQue<QuePosition::B2, 1> inQueueB2;
TQue<QuePosition::CO1, 1> outQueueCO1;
GlobalTensor<half> aGM;
GlobalTensor<half> bGM;
GlobalTensor<dst_T> cGM;
uint16_t m = 1984, k = 256, n = 32;
uint16_t baseM = 992, baseK = 256, baseN = 16;
uint16_t aSize, bSize, cSize;
uint16_t nBlockSize = 16;
...
5 通过BT Buffer实现高效的bias计算
算子中进行带bias的矩阵乘计算时,可将bias数据搬运至C2(Bias Table Buffer)上,调用一次Mmad接口实现矩阵乘加bias的计算。相比于先将矩阵乘的结果从CO1(L0C)搬运到GM上,再搬运到UB上进行加bias的过程,减少了数据搬运的次数,可提升内存使用效率。数据流图对比如下:
图5-1 优化前数据流图
图5-2 优化后数据流图
在优化前,算子进行带bias的矩阵乘计算时,过程如下:
- 将矩阵乘的计算结果从CO1(L0C)搬运到workspace上;
- 从workspace搬运到UB上;
- 在UB上进行加bias的运算;
- 最后将结果搬运到GM。
当循环n次该计算过程,则分别增加了n次CO1->workspace、workspace->UB的搬运。
// 该样例仅做示例说明,非完整代码,省略了部分同步控制代码
public:
__aicore__ inline KernelSample()
{
aSize = m * k;
bSize = k * n;
cSize = m * n;
}
__aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *bias, __gm__ uint8_t *c)
{
aGM.SetGlobalBuffer((__gm__ half *)a);
bGM.SetGlobalBuffer((__gm__ half *)b);
cGM.SetGlobalBuffer((__gm__ float *)c);
biasGM.SetGlobalBuffer((__gm__ float *)bias);
pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
pipe.InitBuffer(inQueueBias, 1, n * sizeof(float));
pipe.InitBuffer(inQueueSrc0, 1, cSize * sizeof(float));
pipe.InitBuffer(outQueueDst, 1, cSize * sizeof(float));
}
__aicore__ inline void Process()
{
CopyIn();
SplitA();
SplitB();
Compute();
CopyOut();
CopyIn1();
Compute1();
CopyOut1();
}
private:
__aicore__ inline void CopyIn()
{
LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
LocalTensor<float> biasLocal = inQueueBias.AllocTensor<float>();
Nd2NzParams dataCopyA1Params;
dataCopyA1Params.ndNum = 1;
dataCopyA1Params.nValue = m;
dataCopyA1Params.dValue = k;
dataCopyA1Params.srcNdMatrixStride = 0;
dataCopyA1Params.srcDValue = k;
dataCopyA1Params.dstNzC0Stride = m;
dataCopyA1Params.dstNzNStride = 1;
dataCopyA1Params.dstNzMatrixStride = 0;
DataCopy(a1Local, aGM, dataCopyA1Params);
Nd2NzParams dataCopyB1Params;
dataCopyB1Params.ndNum = 1;
dataCopyB1Params.nValue = k;
dataCopyB1Params.dValue = n;
dataCopyB1Params.srcNdMatrixStride = 0;
dataCopyB1Params.srcDValue = n;
dataCopyB1Params.dstNzC0Stride = k;
dataCopyB1Params.dstNzNStride = 1;
dataCopyB1Params.dstNzMatrixStride = 0;
DataCopy(b1Local, bGM, dataCopyB1Params);
// 将bias搬运到UB
DataCopy(biasLocal, biasGM, n);
inQueueA1.EnQue(a1Local);
inQueueB1.EnQue(b1Local);
inQueueBias.EnQue(biasLocal);
}
__aicore__ inline void SplitA()
{
...
}
__aicore__ inline void SplitB()
{
...
}
__aicore__ inline void Compute()
{
LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
MmadParams mmadParams;
mmadParams.m = m;
mmadParams.n = n;
mmadParams.k = k;
// 矩阵乘
Mmad(c1Local, a2Local, b2Local, mmadParams); // m*n
outQueueCO1.EnQue<float>(c1Local);
inQueueA2.FreeTensor(a2Local);
inQueueB2.FreeTensor(b2Local);
}
__aicore__ inline void CopyOut()
{
LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
GM_ADDR usrWorkspace = AscendC::GetUserWorkspace(workspace);
xGm.SetGlobalBuffer((__gm__ float *)(usrWorkspace));
FixpipeParamsV220 fixpipeParams;
fixpipeParams.nSize = n;
fixpipeParams.mSize = m;
fixpipeParams.srcStride = m;
fixpipeParams.dstStride = n;
fixpipeParams.ndNum = 1;
fixpipeParams.srcNdStride = 0;
fixpipeParams.dstNdStride = 0;
// 将矩阵乘的计算结果从CO1搬运到workspace
Fixpipe(xGm, c1Local, fixpipeParams);
outQueueCO1.FreeTensor(c1Local);
}
__aicore__ inline void CopyIn1()
{
PipeBarrier<PIPE_ALL>();
// 将矩阵乘的计算结果从workspace搬运到UB
LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
DataCopy(src0Local, xGm, cSize);
inQueueSrc0.EnQue(src0Local);
}
__aicore__ inline void Compute1()
{
LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
LocalTensor<float> biasLocal = inQueueBias.DeQue<float>();
LocalTensor<float> dstLocal = outQueueDst.AllocTensor<float>();
BinaryRepeatParams addRepeatParams;
addRepeatParams.dstRepStride = 8;
addRepeatParams.src0RepStride = 8;
addRepeatParams.src1RepStride = 0;
// 加bias的运算
Add(dstLocal, src0Local, biasLocal, 32, m, addRepeatParams);
outQueueDst.EnQue<float>(dstLocal);
inQueueSrc0.FreeTensor(src0Local);
inQueueBias.FreeTensor(biasLocal);
}
__aicore__ inline void CopyOut1()
{
...
}
private:
TPipe pipe;
TQue<QuePosition::A1, 1> inQueueA1;
TQue<QuePosition::A2, 1> inQueueA2;
TQue<QuePosition::B1, 1> inQueueB1;
TQue<QuePosition::B2, 1> inQueueB2;
TQue<QuePosition::VECIN, 1> inQueueBias;
TQue<QuePosition::VECIN, 1> inQueueSrc0;
TQue<QuePosition::VECOUT, 1> outQueueDst;
GlobalTensor<half> aGM;
GlobalTensor<half> bGM;
GlobalTensor<dst_T> cGM;
GlobalTensor<float> biasGM;
uint16_t m = 32, k = 32, n = 32;
uint16_t aSize, bSize, cSize;
...
经过优化,该算子进行带bias的矩阵乘计算时,先将bias搬运到BT上,调用一次Mmad接口实现矩阵乘加bias的计算。
...
// 该样例仅做示例说明,非完整代码,省略了部分同步控制代码
public:
__aicore__ inline KernelSample()
{
aSize = m * k;
bSize = k * n;
cSize = m * n;
}
__aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *bias, __gm__ uint8_t *c)
{
aGM.SetGlobalBuffer((__gm__ half *)a);
bGM.SetGlobalBuffer((__gm__ half *)b);
cGM.SetGlobalBuffer((__gm__ float *)c);
biasGM.SetGlobalBuffer((__gm__ float *)bias);
pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
pipe.InitBuffer(inQueueC1, 1, n * sizeof(float));
pipe.InitBuffer(outQueueC2, 1, n * sizeof(float));
}
__aicore__ inline void Process()
{
CopyIn();
SplitA();
SplitB();
SplitBias();
Compute();
CopyOut();
}
private:
__aicore__ inline void CopyIn()
{
LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
LocalTensor<float> bias1Local = inQueueC1.AllocTensor<float>();
Nd2NzParams dataCopyA1Params;
dataCopyA1Params.ndNum = 1;
dataCopyA1Params.nValue = m;
dataCopyA1Params.dValue = k;
dataCopyA1Params.srcNdMatrixStride = 0;
dataCopyA1Params.srcDValue = k;
dataCopyA1Params.dstNzC0Stride = m;
dataCopyA1Params.dstNzNStride = 1;
dataCopyA1Params.dstNzMatrixStride = 0;
DataCopy(a1Local, aGM, dataCopyA1Params);
Nd2NzParams dataCopyB1Params;
dataCopyB1Params.ndNum = 1;
dataCopyB1Params.nValue = k;
dataCopyB1Params.dValue = n;
dataCopyB1Params.srcNdMatrixStride = 0;
dataCopyB1Params.srcDValue = n;
dataCopyB1Params.dstNzC0Stride = k;
dataCopyB1Params.dstNzNStride = 1;
dataCopyB1Params.dstNzMatrixStride = 0;
DataCopy(b1Local, bGM, dataCopyB1Params);
// 将bias从GM搬运到L1
DataCopy(bias1Local, biasGM, n);
inQueueA1.EnQue(a1Local);
inQueueB1.EnQue(b1Local);
inQueueC1.EnQue(bias1Local);
}
__aicore__ inline void SplitA()
{
...
}
__aicore__ inline void SplitB()
{
...
}
__aicore__ inline void SplitBias()
{
LocalTensor<float> bias1Local = inQueueC1.DeQue<float>();
LocalTensor<float> bias2Local = outQueueC2.AllocTensor<float>();
// 将bias从L1搬运到BT
DataCopy(bias2Local, bias1Local, { 1, (uint16_t)(n * sizeof(float) / 64), 0, 0 });
outQueueC2.EnQue<float>(bias2Local);
inQueueC1.FreeTensor(bias1Local);
}
__aicore__ inline void Compute()
{
LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
LocalTensor<float> bias2Local = outQueueC2.DeQue<float>();
LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
MmadParams mmadParams;
mmadParams.m = m;
mmadParams.n = n;
mmadParams.k = k;
mmadParams.cmatrixInitVal = false;
// 矩阵乘
Mmad(c1Local, a2Local, b2Local, bias2Local, mmadParams);
outQueueCO1.EnQue<float>(c1Local);
inQueueA2.FreeTensor(a2Local);
inQueueB2.FreeTensor(b2Local);
outQueueC2.FreeTensor(bias2Local);
}
__aicore__ inline void CopyOut()
{
LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
FixpipeParamsV220 fixpipeParams;
fixpipeParams.nSize = n;
fixpipeParams.mSize = m;
fixpipeParams.srcStride = m;
fixpipeParams.dstStride = n;
fixpipeParams.ndNum = 1;
fixpipeParams.srcNdStride = 0;
fixpipeParams.dstNdStride = 0;
Fixpipe(cGM, c1Local, fixpipeParams);
outQueueCO1.FreeTensor(c1Local);
}
private:
TPipe pipe;
TQue<QuePosition::A1, 1> inQueueA1;
TQue<QuePosition::A2, 1> inQueueA2;
TQue<QuePosition::B1, 1> inQueueB1;
TQue<QuePosition::B2, 1> inQueueB2;
TQue<QuePosition::CO1, 1> outQueueCO1;
TQue<QuePosition::C1, 1> inQueueC1;
TQue<QuePosition::C2, 1> outQueueC2;
GlobalTensor<half> aGM;
GlobalTensor<half> bGM;
GlobalTensor<dst_T> cGM;
GlobalTensor<float> biasGM;
uint16_t m = 32, k = 32, n = 32;
uint16_t aSize, bSize, cSize;
6 通过FP Buffer存放量化参数实现高效随路量化
算子实现中对矩阵乘结果进行量化计算时,可将量化参数搬运到C2PIPE2GM(Fixpipe Buffer)上,调用一次Fixpipe接口实现矩阵乘结果的量化计算。相比于将矩阵乘的结果从CO1(L0C)搬运到GM,再从GM搬运到UB,在UB进行量化计算的过程,数据搬运的次数更少,内存使用效率更高。
图6-1 优化前数据流图
图6-2 优化后数据流图
在优化前,对矩阵乘结果进行量化计算的过程如下:
- 将矩阵乘的结果从CO1搬运到workspace上;
- 再从workspace搬运到UB上;
- 将量化参数搬运到UB上,和矩阵乘的结果一起在UB上进行一系列量化计算;
- 将最终量化结果从UB搬运到GM上。
相比于正确示例多增加了CO1->workspace、workspace->UB的搬运过程和量化的vector计算。
...
// 该样例仅做示例说明,非完整代码,省略了部分同步控制代码
public:
__aicore__ inline KernelSample()
{
aSize = m * k;
bSize = k * n;
cSize = m * n;
}
__aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c, __gm__ uint8_t *deqTensor)
{
aGM.SetGlobalBuffer((__gm__ half *)a);
bGM.SetGlobalBuffer((__gm__ half *)b);
cGM.SetGlobalBuffer((__gm__ float *)c);
deqGM.SetGlobalBuffer((__gm__ half *)deqTensor);
pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
pipe.InitBuffer(inQueueSrc0, 1, cSize * sizeof(float));
pipe.InitBuffer(inQueueTmp, 1, cSize * sizeof(half));
pipe.InitBuffer(inQueueDeq, 1, cSize * sizeof(half));
pipe.InitBuffer(outQueueDst, 1, cSize * sizeof(int8_t));
}
__aicore__ inline void Process()
{
CopyIn();
SplitA();
SplitB();
Compute();
CopyOut();
CopyIn1();
Compute1();
CopyOut1();
}
private:
__aicore__ inline void CopyIn()
{
LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
LocalTensor<half> deqLocal = inQueueDeq.AllocTensor<half>();
Nd2NzParams dataCopyA1Params;
dataCopyA1Params.ndNum = 1;
dataCopyA1Params.nValue = m;
dataCopyA1Params.dValue = k;
dataCopyA1Params.srcNdMatrixStride = 0;
dataCopyA1Params.srcDValue = k;
dataCopyA1Params.dstNzC0Stride = m;
dataCopyA1Params.dstNzNStride = 1;
dataCopyA1Params.dstNzMatrixStride = 0;
DataCopy(a1Local, aGM, dataCopyA1Params);
Nd2NzParams dataCopyB1Params;
dataCopyB1Params.ndNum = 1;
dataCopyB1Params.nValue = k;
dataCopyB1Params.dValue = n;
dataCopyB1Params.srcNdMatrixStride = 0;
dataCopyB1Params.srcDValue = n;
dataCopyB1Params.dstNzC0Stride = k;
dataCopyB1Params.dstNzNStride = 1;
dataCopyB1Params.dstNzMatrixStride = 0;
DataCopy(b1Local, bGM, dataCopyB1Params);
// 将量化参数搬运到UB
DataCopy(deqLocal, deqGM, cSize);
inQueueA1.EnQue(a1Local);
inQueueB1.EnQue(b1Local);
inQueueDeq.EnQue(deqLocal);
}
__aicore__ inline void SplitA()
{
...
}
__aicore__ inline void SplitB()
{
...
}
__aicore__ inline void Compute()
{
LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
MmadParams mmadParams;
mmadParams.m = m;
mmadParams.n = n;
mmadParams.k = k;
// 矩阵乘
Mmad(c1Local, a2Local, b2Local, mmadParams); // m*n
outQueueCO1.EnQue<float>(c1Local);
inQueueA2.FreeTensor(a2Local);
inQueueB2.FreeTensor(b2Local);
}
__aicore__ inline void CopyOut()
{
LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
GM_ADDR usrWorkspace = AscendC::GetUserWorkspace(workspace);
xGm.SetGlobalBuffer((__gm__ float *)(usrWorkspace));
FixpipeParamsV220 fixpipeParams;
fixpipeParams.nSize = n;
fixpipeParams.mSize = m;
fixpipeParams.srcStride = m;
fixpipeParams.dstStride = n;
fixpipeParams.ndNum = 1;
fixpipeParams.srcNdStride = 0;
fixpipeParams.dstNdStride = 0;
// 将矩阵乘的计算结果从CO1搬运到workspace
Fixpipe(xGm, c1Local, fixpipeParams);
outQueueCO1.FreeTensor(c1Local);
}
__aicore__ inline void CopyIn1()
{
PipeBarrier<PIPE_ALL>();
// 将矩阵乘的计算结果从workspace搬运到UB
LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
DataCopy(src0Local, xGm, cSize);
inQueueSrc0.EnQue(src0Local);
}
__aicore__ inline void Compute1()
{
LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
LocalTensor<half> tmpLocal = inQueueTmp.AllocTensor<half>();
LocalTensor<half> deqLocal = inQueueDeq.DeQue<half>();
LocalTensor<int8_t> dstLocal = outQueueDst.AllocTensor<int8_t>();
// 量化计算
Cast(tmpLocal, src0Local, RoundMode::CAST_NONE, cSize);
LocalTensor<half> tmpHalfBuffer = src0Local.ReinterpretCast<half>();
Mul(tmpHalfBuffer, tmpLocal, deqLocal, cSize);
Cast(dstLocal, tmpHalfBuffer, RoundMode::CAST_NONE, cSize);
outQueueDst.EnQue<int8_t>(dstLocal);
inQueueSrc0.FreeTensor(src0Local);
inQueueTmp.FreeTensor(tmpLocal);
inQueueDeq.FreeTensor(deqLocal);
}
__aicore__ inline void CopyOut1()
{
...
}
private:
TPipe pipe;
TQue<QuePosition::A1, 1> inQueueA1;
TQue<QuePosition::A2, 1> inQueueA2;
TQue<QuePosition::B1, 1> inQueueB1;
TQue<QuePosition::B2, 1> inQueueB2;
TQue<QuePosition::CO1, 1> outQueueCO1;
TQue<QuePosition::VECIN, 1> inQueueDeq;
TQue<QuePosition::VECIN, 1> inQueueSrc0;
TQue<QuePosition::VECCALC, 1> inQueueTmp;
TQue<QuePosition::VECOUT, 1> outQueueDst;
GlobalTensor<half> aGM;
GlobalTensor<half> bGM;
GlobalTensor<dst_T> cGM;
GlobalTensor<float> biasGM;
uint16_t m = 32, k = 32, n = 32;
uint16_t aSize, bSize, cSize;
...
经过优化,该算子对矩阵乘的结果进行量化计算时,可将量化参数搬运到FB(Fixpipe Buffer)上,调用一次Fixpipe接口实现矩阵乘结果的量化计算。
...
public:
__aicore__ inline KernelSample()
{
aSize = m * k;
bSize = k * n;
cSize = m * n;
}
__aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c, __gm__ uint8_t *deqTensor)
{
aGM.SetGlobalBuffer((__gm__ half *)a);
bGM.SetGlobalBuffer((__gm__ half *)b);
cGM.SetGlobalBuffer((__gm__ float *)c);
deqGM.SetGlobalBuffer((__gm__ uint64_t *)deqTensor);
pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
pipe.InitBuffer(inQueueDeq1, 1, cSize * sizeof(uint64_t));
pipe.InitBuffer(inQueueDeq, 1, cSize * sizeof(uint64_t));
}
__aicore__ inline void Process()
{
CopyIn();
SplitA();
SplitB();
SplitDeq();
Compute();
CopyOut();
}
private:
__aicore__ inline void CopyIn()
{
LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
LocalTensor<uint64_t> deq1Local = inQueueDeq1.AllocTensor<uint64_t>();
Nd2NzParams dataCopyA1Params;
dataCopyA1Params.ndNum = 1;
dataCopyA1Params.nValue = m;
dataCopyA1Params.dValue = k;
dataCopyA1Params.srcNdMatrixStride = 0;
dataCopyA1Params.srcDValue = k;
dataCopyA1Params.dstNzC0Stride = m;
dataCopyA1Params.dstNzNStride = 1;
dataCopyA1Params.dstNzMatrixStride = 0;
DataCopy(a1Local, aGM, dataCopyA1Params);
Nd2NzParams dataCopyB1Params;
dataCopyB1Params.ndNum = 1;
dataCopyB1Params.nValue = k;
dataCopyB1Params.dValue = n;
dataCopyB1Params.srcNdMatrixStride = 0;
dataCopyB1Params.srcDValue = n;
dataCopyB1Params.dstNzC0Stride = k;
dataCopyB1Params.dstNzNStride = 1;
dataCopyB1Params.dstNzMatrixStride = 0;
DataCopy(b1Local, bGM, dataCopyB1Params);
// 将量化参数搬运到L1上
DataCopy(deq1Local, deqGM, cSize);
inQueueA1.EnQue(a1Local);
inQueueB1.EnQue(b1Local);
inQueueDeq.EnQue(deq1Local);
}
__aicore__ inline void SplitA()
{
...
}
__aicore__ inline void SplitB()
{
...
}
__aicore__ inline void SplitDeq()
{
LocalTensor<uint64_t> deq1Local = inQueueDeq1.DeQue<uint64_t>();
LocalTensor<uint64_t> deqLocal = inQueueDeq.AllocTensor<uint64_t>();
// 将量化参数从L1->FB
DataCopy(deqLocal, deq1Local, { 1, (uint16_t)(cSize * sizeof(uint64_t) / 128), 0, 0 });
inQueueDeq.EnQue<uint61_t>(deqLocal);
inQueueDeq1.FreeTensor(deq1Local);
}
__aicore__ inline void Compute()
{
LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
MmadParams mmadParams;
mmadParams.m = m;
mmadParams.n = n;
mmadParams.k = k;
// 矩阵乘
Mmad(c1Local, a2Local, b2Local, mmadParams); // m*n
outQueueCO1.EnQue<float>(c1Local);
inQueueA2.FreeTensor(a2Local);
inQueueB2.FreeTensor(b2Local);
}
__aicore__ inline void CopyOut()
{
LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
LocalTensor<uint64_t> deqLocal = inQueueDeq.DeQue<uint64_t>();
SetFixpipeNz2ndFlag(1, 0, 0);
DataCopyCO12DstParams dataCopyParams;
dataCopyParams.nSize = n;
dataCopyParams.mSize = m;
dataCopyParams.srcStride = m;
dataCopyParams.dstStride = n;
dataCopyParams.quantPre = QuantMode_t::VQF322B8_PRE;
dataCopyParams.nz2ndEn = true;
// 将矩阵乘进行量化后的计算结果搬出
DataCopy(cGM, c1Local, DataCopyCO12DstParams);
outQueueCO1.FreeTensor(c1Local);
}
private:
TPipe pipe;
TQue<QuePosition::A1, 1> inQueueA1;
TQue<QuePosition::A2, 1> inQueueA2;
TQue<QuePosition::B1, 1> inQueueB1;
TQue<QuePosition::B2, 1> inQueueB2;
TQue<QuePosition::C1, 1> inQueueDeq1;
TQue<QuePosition::C2PIPE2GM, 1> inQueueDeq;
TQue<QuePosition::CO1, 1> outQueueCO1;
GlobalTensor<half> aGM;
GlobalTensor<half> bGM;
GlobalTensor<dst_T> cGM;
GlobalTensor<uint64_t> deqTensorGM;
uint16_t m = 32, k = 32, n = 32;
uint16_t aSize, bSize, cSize;
...
7 更多学习资源
了解更多Ascend C算子性能优化手段和实践案例,请访问:https://www.hiascend.com/ascend-c
- 点赞
- 收藏
- 关注作者
评论(0)