基于LangChain手工测试用例转接口自动化测试生成工具
        【摘要】 接口自动化测试用例是一个老生常谈的问题,在未引入人工智能之前,也有非常多的生成方案,比如如下所示,通过har生成接口自动化测试用例:但是以上的生成方式依然是有一些弊端,比如 har 本身虽然能表述一定的接口信息和业务信息,但是毕竟无法用来表述全部的应用场景与用例场景。而大部分的应用场景和用例场景,均是通过自然语言进行描述的。而解析自然语言,则是大语言模型擅长做的事情。 实践演练 需求说明以下...
    
    
    
    接口自动化测试用例是一个老生常谈的问题,在未引入人工智能之前,也有非常多的生成方案,比如如下所示,通过har生成接口自动化测试用例:

但是以上的生成方式依然是有一些弊端,比如 har 本身虽然能表述一定的接口信息和业务信息,但是毕竟无法用来表述全部的应用场景与用例场景。而大部分的应用场景和用例场景,均是通过自然语言进行描述的。而解析自然语言,则是大语言模型擅长做的事情。
实践演练
需求说明
以下内容为3条接口测试用例:
| 测试模块 | 测试标题 | 测试步骤 | 预期结果 | 
|---|---|---|---|
| 接口功能 | 正常情况下的请求 | 发送一个正常的GET请求 | 响应状态码为 200 ,并返回请求者的IP地址 | 
| 接口功能 | 非法请求方法 | 发送一个非GET请求,如POST或者PUT | 响应状态码为 405 | 
| 接口功能 | 无效的请求路径 | 发送一个不存在的路径 | 响应状态码为404 | 
以下为一个获取ip接口的har文件:
- 接口Har文件(需要可留言领取)
 
实现原理
接下来,将通过这两个数据文件自动生成对应的测试用例。

通过功能用例生成测试脚本
在这个过程中,测试用例本身是自然语言,自然语言的解析与处理本身就是大模型非常擅长的工作。而可以通过 LangChain 简化整个的实现的过程。
编写的提示词模版信息如下所示:
template = """
你是一个自动化测试工程师,精通的技术栈为 Python pytest requests库
以下是这个接口的具体信息,
{context}
Question: {input}"""
通过功能测试用例生成的自动化测试脚本如下所示:
#1. Test case: 正常情况下的请求
import pytest
import requests
def test_normal_request():
    url = 'http://example.com/normal_request'
    response = requests.get(url)
    assert response.status_code == 200
    assert response.json()['ip_address'] == 'requester_ip'
#2. Test case: 非法请求方法
import pytest
import requests
def test_invalid_request_method():
    url = 'http://example.com/invalid_request_method'
    response = requests.post(url)
    assert response.status_code == 405
# 3. Test case: 无效的请求路径
import pytest
import requests
def test_invalid_request_path():
    url = 'http://example.com/invalid_request_path'
    response = requests.get(url)
    assert response.status_code == 404
当然,在此过程中可以很明显的发现,自动生成的用例是没有任何的接口信息的。原因是我们给到的数据里面就是没有接口信息的。
填充接口数据
接下来,将读取har文件中的接口数据信息,和脚本进行结合。
提示词模版如下:
template = """
    你是一个自动化测试工程师,你非常熟悉requests库
    {context}
    Question: 
    请根据传入的接口信息提取request中的 ip 、 url 、method、json。
    key值为前面提到的字段,如果没有则无需添加。如果有则提取对应的value。
    要求返回的格式为json格式
"""
生成结果如下:
{
  "ip": "182.92.156.22",
  "url": "https://httpbin.ceshiren.com/ip",
  "method": "GET"
}
完整代码
再将以上的过程结合之后,完整版的代码如下所示
from langchain_community.chat_models.openai import ChatOpenAI
from langchain_community.document_loaders.text import TextLoader
from langchain_core.output_parsers import JsonOutputParser, StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from utils.langchain_debug import langchain_debug
langchain_debug()
llm = ChatOpenAI()
def get_by_filename(filename):
    info = TextLoader(f'./data/{filename}')
    return info.load()
def get_case_data(_):
    template = """
        你是一个自动化测试工程师,你非常熟悉requests库
        {context}
        Question: {input}
        请根据传入的接口信息提取request中的 ip 、 url 、method、json。
        key值为前面提到的字段,如果没有则无需添加。如果有则提取对应的value。
        要求返回的格式为json格式
        """
    prompt = PromptTemplate.from_template(template=template, )
    data_chain = (
            RunnablePassthrough.assign(context=lambda x: get_by_filename("ip.har"), )
            | prompt
            | llm
            | JsonOutputParser()
    )
    return data_chain
def get_case():
    """
    通过大模型生成测试数据。
    :return:
    """
    template = """
        你是一个自动化测试工程师,精通的技术栈为 Python pytest requests库
        以下是这个接口的具体信息,你的
        {context}
        请求的参数信息将输入一个字典,输入的内容为
        {req}
        Question: {input}"""
    # 模板提示,输出 json 格式的回答
    prompt = PromptTemplate.from_template(
        template=template, )
    chain = (
            RunnablePassthrough.
            assign(context=lambda x: get_by_filename("获取ip测试用例.md"),
                   req=get_case_data)
            | prompt
            | llm
            | StrOutputParser()
    )
    input_template = """
    根据每条测试用例的测试步骤,生成对应的测试数据信息,
    每条测试用例要求都有一条对应的单独的pytest函数
    """
    print(chain.invoke({"input": input_template}))
if __name__ == '__main__':
    get_case()
总结
- 掌握接口自动化测试用例生成的原理。
 - 了解如何通过大语言模型生成接口自动化测试脚本与数据。
 - 掌握通过LangChain生成完整版接口自动化测试用例的方法。
 
            【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
                cloudbbs@huaweicloud.com
                
            
        
        
        
        
        
        
        - 点赞
 - 收藏
 - 关注作者
 
            
           
评论(0)