Kmesh v0.4发布!迈向大规模 Sidecarless 服务网格
近日我们很高兴的宣布 Kmesh 发布了 v0.4.0 版本。感谢社区的贡献者在两个多月的时间里做出了巨大的努力,使得 Kmesh 取得功能完整度、稳定性、可靠性的多重提升。当前 Kmesh 相较业界其他方案已经具备显著的资源开销小和低延时等优势,后续我们会继续在核心功能和大规模稳定性等方面重点投入,争取尽快达到 GA(生产可用)。
▍Kmesh 背景回顾
尽管服务网格已经在过去几年持续曝光,获得了很大的知名度,但是 Sidecar 模式在资源开销、数据链路时延等方面对工作负载产生了很大的影响。所以用户在落地选型时,还是比较谨慎。除此之外,Sidecar 模式还有一个比较大的缺点是 Sidecar 与业务容器生命周期完全绑定,无法做到独立升级。
因此 Kmesh 创新性的提出基于内核的 Sidecarless 的流量治理方案,将流量治理下沉到内核以解决 Sidecar 模式用户关心的一些问题。eBPF 技术非常适合四层的流量治理,加上可编程内核模块可以进行七层的流量编排。Kmesh 最早完全通过 eBPF 和内核模块进行 L4-L7 的治理。Kmesh 采用随流治理的策略,不会额外增加服务通信过程中的连接跳数,相比 Sidecar 模式,服务之间的通信连接数从三条减少到一条。
为了丰富七层协议的治理能力,今年 Kmesh 增加了一种新的治理模式 Workload:远端流量治理,利用 ebpf 将流量转发到 kmesh-waypoint,进行高级的七层协议治理,这是一种更加灵活的分层治理模型,能够按需满足不同用户的需求。
▍Kmesh v0.4版本关键特性解析
IPv6支持
以前 Kmesh 只支持采用 IPv4 通信的服务治理,但是当前 Kubernetes 集群已经默认支持双栈集群,我们不能假设服务只采用 IPv4 协议通信,因此在 0.4 版本中我们适配了 IPv6 的协议特征,支持了 IPv6 的服务治理。
值得注意的是:即使在 IPv4 集群中,Java 应用在通信时,默认采用 IPv6 地址族进行通信,所以如果需要采用 Kmesh 对 Java 服务进行治理,请一定要升级 Kmesh 0.4 版本。
IPv6 目前只在 Workload 模式下完整支持。请期待下一个版本中,Kmesh 本地模式(流量治理完全下沉内核)也将完全支持 IPv6 协议族。
细粒度的流量治理
v0.4 版本,除了按照 Namespace 进行服务的纳管以外,我们还支持了按照 pod 粒度进行流量的纳管治理。一定程度上增加了灵活性,满足了客户只针对一个命名空间下的特定工作负载进行治理的需求。
特定 Pod 纳管
kubectl label pod <podName> istio.io/dataplane-mode=kmesh -n {namespace}
整个 Namespace 纳管
kubectl label ns <namespace> istio.io/dataplane-mode=kmesh
-
场景一:Pod 创建时已经打上了标签,那么 kmesh 通过 Kmesh-cni 在容器网络初始化的时候通知 kmesh eBPF 程序进行纳管,保证工作负载启动之前完成纳管,不会遗漏任何数据包的治理。
-
场景二:在 pod 启动之后,再为 Pod 打上 istio.io/dataplane-mode:kmesh标签,那么 Kmesh-daemon 会监听 Pod 事件,检查到标签更新后,通知 kmesh ebpf 程序进行纳管。
-
场景三:去掉 istio.io/dataplane-mode:kmesh 标签,允许 Pod 不被 Kmesh 纳管。
这种纳管方式更加灵活,也方便了用户在发现服务访问故障之后,快速进行故障隔离,定位定界。
支持集群外部服务治理
在服务网格中,我们可以通过 ServiceEntry 定义网格外部服务,一般为 DNS 类型。
apiVersion: networking.istio.io/v1
kind: ServiceEntry
metadata:
name: external-svc
spec:
hosts:
- news.google.com
location: MESH_EXTERNAL
ports:
- number: 80
name: http
protocol: HTTP
resolution: DNS
DNS 类型服务的治理,大大拓展了 Kmesh 服务治理的范畴,由 Kubernets 集群,扩展到外部服务。
基于 eBPF 的轻量化可观测
可观测性是服务网格中很重要的基础能力,对于了解数据面通信的状态具有重大意义,可以基于监控进行告警。Kmesh 采用了分层观测架构,在治理数据面,内核中存在大量可用于观测的指标数据,Kmesh 通过 eBPF 以极低的代价将这些微观、细粒度指标收集起来,并支持链路级、Pod 级等多维度信息采集;并通过 ringbuf map 上报给 kmesh-daemon 组件,daemon 中根据实时订阅的观测数据,再组织加工成用户可理解的可观测信息。
当前 Kmesh 已支持以下四种监控指标,每一种指标都通过标签标识源和目的应用,用户还可以配置 Prometheus 进行采集。
- kmesh_tcp_connections_opened_total
- kmesh_tcp_connections_closed_total
- kmesh_tcp_received_bytes_total
- kmesh_tcp_sent_bytes_total
接下来,社区将继续丰富metrics、access log等观测的采集,并完善与Prometheus、Grafana 等观测平台的对接。
在线日志级别调整
动态日志级别调整对于故障诊断具有很大的帮助,早期的版本,如果要分析 bpf 数据面的问题,获取更详细的定位日志,你需要修改代码并重新构建镜像,整个过程非常低效;新版本中被彻底改善,我们支持了在线日志级别调整,用户通过 Kmesh 运维命令,可实时调整用户态 Kmesh-daemon 和 bpf 程序的日志级别。
使用样例如下:
#Adjust kmesh-daemon log level (e.g., debug | error | info)
kubectl exec -ti -n kmesh-system kmesh-6ct4h -- kmesh-daemon log --set default:debug
#Adjust kmesh eBPF data plane log level
kubectl exec -ti -n kmesh-system kmesh-6ct4h -- kmesh-daemon log --set bpf:debug
除了新特性的加入,v0.4 版本在可维护性、大规模性能、可测试性等方面也做出了诸多改进。
大规模集群支持
生产环境中,根据部署业务的不同,集群规模可大可小,对于 Kmesh 来说,大规模集群更能展现 Kmesh 架构的优势,经过评估,Kmesh 需要支持 5000 服务,10万 pod 级的集群管理,以满足绝大多数生产使用诉求。
对于远端模式,Kmesh 修改了 bpf map 的创建模式,支持按需申请 bpf map 中的记录,这样我们可以很容易的支持大规模集群,且不引入冗余的内存开销;
对于本地模式, bpf map 更新慢的问题一直困扰着我们,原本刷新一条规则需要几十甚至上百毫秒,0.4 版本,我们优化了 map-in-map 的初始化逻辑,通过空间换时间的策略,消除了 map-in-map 的刷新耗时,将规则的刷新降低到 ms 以内,这为后续支持大规模奠定了坚实的基础。
E2E测试
Kmesh 当前正处于快速膨胀的成长期,新特性正源源不断的加入到 Kmesh 中,如何保障社区的整体质量,确保 Kmesh 平稳有序的向前发展是社区面临的重要挑战;虽然社区已经有 UT test 做功能防护,但我们还缺少黑盒视角、集群级的功能防护;为此社区引入了 E2E 测试框架,并将其部署在 PR 门禁中,这样,每个新 PR 提交时,就可以及时检查新提交对于已有功能的影响,这对于 Kmesh 非常有用,当前 E2E 测试框架已经部署上线,并增加了部分测试用例,后续将不断丰富测试集,也欢迎社区的小伙伴们共同完善Kmesh测试防护网。详细的运行E2E测试请参考https://kmesh.net/en/docs/developer/e2e-guide/
▍加入社区贡献
我们希望借助在 Istio 社区长期的积累,始终以开放中立的态度发展 Kmesh,打造 Sidecarless 服务网格业界标杆方案,服务千行百业,促进服务网格健康有序的发展。Kmesh 当前正处于高速发展阶段,我们诚邀广大有志之士加入!
参考链接
[1] Kmesh Website:https://kmesh.net/
[3] 可观测性设计:https://github.com/kmesh-net/kmesh/blob/main/docs/proposal/observability.md
添加小助手k8s2222
回复Kmesh进入技术交流群
- 点赞
- 收藏
- 关注作者
评论(0)