探索Python中的聚类算法:K-means

举报
Echo_Wish 发表于 2024/03/21 08:57:00 2024/03/21
【摘要】 在机器学习领域中,聚类算法被广泛应用于数据分析和模式识别。K-means 是其中一种常用的聚类算法,它能够将数据集分成 K 个不同的组或簇。本文将详细介绍 K-means 算法的原理、实现步骤以及如何使用 Python 进行编程实践。 什么是 K-means?K-means 是一种基于距离的聚类算法,它将数据集中的样本划分为 K 个不同的簇,使得同一簇内的样本之间的距离尽可能小,而不同簇之间...

在机器学习领域中,聚类算法被广泛应用于数据分析和模式识别。K-means 是其中一种常用的聚类算法,它能够将数据集分成 K 个不同的组或簇。本文将详细介绍 K-means 算法的原理、实现步骤以及如何使用 Python 进行编程实践。

什么是 K-means?

K-means 是一种基于距离的聚类算法,它将数据集中的样本划分为 K 个不同的簇,使得同一簇内的样本之间的距离尽可能小,而不同簇之间的距离尽可能大。

K-means 的原理

K-means 算法的核心思想可以概括为以下几个步骤:

  • 初始化中心点:首先随机选择 K 个样本作为初始的聚类中心点。

  • 样本分配:对于每个样本,根据其与各个中心点的距离,将其分配到最近的簇中。

  • 更新中心点:对于每个簇,计算其中所有样本的均值,将其作为新的中心点。

  • 重复迭代:重复步骤 2 和步骤 3,直到达到最大迭代次数或者中心点不再发生变化。

  • 得到最终簇:最终得到 K 个簇,每个簇包含一组相似的样本。

Python 中的 K-means 实现

下面我们使用 Python 中的 scikit-learn 库来实现一个简单的 K-means 聚类模型:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans

# 生成随机数据集
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

# 构建 K-means 聚类模型
kmeans = KMeans(n_clusters=4)

# 拟合数据
kmeans.fit(X)

# 预测数据所属的簇
y_kmeans = kmeans.predict(X)

# 绘制结果
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')

# 绘制中心点
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75)
plt.show()

在上述代码中,我们首先使用 scikit-learn 的 make_blobs 函数生成了一个随机的二维数据集。然后,我们构建了一个 K-means 聚类模型,并拟合了数据集。最后,我们使用散点图将数据集的样本点按照所属的簇进行了可视化,并标记了簇的中心点。

总结

K-means 算法是一种简单而有效的聚类算法,在许多实际问题中都有着广泛的应用。通过本文的介绍,你已经了解了 K-means 算法的原理、实现步骤以及如何使用 Python 进行编程实践。希望本文能够帮助你更好地理解和应用 K-means 算法。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。