基于volcano实现节点真实负载感知调度
背景
默认调度器调度器视某个节点的空闲可调度资源=节点可分配资源 - SUM(节点上已调度Pod们的request),当某个Pod处于pending状态待调度时,默认调度器根据Pod中指定的request值和各个节点的空闲可调度资源比较,如果某个节点空闲可调度资源 < pod的request值,则节点不可被调度,反之则可能被调度。
从这里可以看出,默认调度主要是依据各个pod创建时设置的request值,可能导致:
- 业务实际负载需要的资源远大于创建时指定的request值,导致节点部署过密,影响业务运行稳定性;
- 业务实际负载需要的资源小于创建时候指定的request值,导致节点部署稀疏,造成资源浪费
基于volcano节点真实负载感知调度方案介绍
默认调度器基于上述调度策略的主要原因是,k8s自己没有真实去获取节点真实资源消耗,导致无法实现更合理的节点的空闲可调度资源=节点可分配资源 - 节点真实资源使用。开源Prometheus可以获取到各个节点的真实负载情况,基于volcano调度插件的能力可以实现基于应用能够基于真实负载调度,在资源满足的情况下,Pod优先被调度至真实负载低的节点,集群各节点负载趋于均衡。
CCE集群开启负载感知调度
限制
- 已创建v1.21及以上版本的集群
- 已安装Volcano 1.11.14及以上版本的插件
- 已安装CCE云原生监控插件(kube-prometheus-stack),并选择server模式
开启负载感知调度
-
安装Volcano调度器、云原生监控插件(安装server模式,agent模式没有custom-metrics API)
-
集群通过Custom Metrics API提供资源指标,修改adapter-config的configMap,添加自定义指标采集规则。配置项与密钥->命名空间选择 “monitoring” ->找到user-adapter-config 点击 “更新”
编辑->添加新规则
- seriesQuery: '{__name__=~"node_cpu_seconds_total"}' resources: overrides: instance: resource: node name: matches: node_cpu_seconds_total as: node_cpu_usage_avg metricsQuery: avg_over_time((1 - avg (irate(<<.Series>>{mode="idle"}[5m])) by (instance))[10m:30s]) - seriesQuery: '{__name__=~"node_memory_MemTotal_bytes"}' resources: overrides: instance: resource: node name: matches: node_memory_MemTotal_bytes as: node_memory_usage_avg metricsQuery: avg_over_time(((1-node_memory_MemAvailable_bytes/<<.Series>>))[10m:30s])
- CPU平均利用率采集规则
node_cpu_usage_avg: 表示节点的CPU平均利用率,该指标名不可修改。
metricsQuery: avg_over_time((1 - avg (irate(<<.Series>>{mode=“idle”}[5m])) by (instance))[10m:30s]):为节点CPU平均利用率的查询语句。当前metricsQuery表示查询所有节点最近10分钟的CPU平均利用率,如果希望调整平均值的计算周期,可以修改上述标红的10m。(30s是分辨率) - Memory平均利用率采集规则:
node_memory_usage_avg: 表示节点的Memory利用率,该指标名不可修改。
metricsQuery:avg_over_time(((1-node_memory_MemAvailable_bytes/<<.Series>>))[10m:30s]) 为节点Memory平均利用率的查询语句。
当前metricsQuery表示查询所有节点最近10分钟的Memory平均利用率,如果希望调整平均值的计算周期为,可以修改上述标红的10m。(30s是分辨率)
-
新部署metrics-api-server负载,使其加载user-adapter-config的最新配置
-
开启负载感知调度能力。配置中心->调度配置->默认调度器”volcano”->资源利用率优化调度->支持负载感知调度
说明:
- 负载感知调度根据CPU、Memory真实负载信息对节点进行打分排序,优先选择负载更低的节点参与调度。
- 如果我们更偏向于将负载调度到cpu真实负载低的节点,或内存真实负载低的节点,可以通过调整权重来影响节点打分,负载优先选择得分最高的节点参与调度
节点打分公式:
节点得分=负载感知策略权重 *((1 - CPU资源利用率) * CPU权重 + (1 - Memory资源利用率) * 内存权重)/(CPU权重 + 内存权重) - 真实负载阈值,从CPU和内存两方面限制节点真实负载的水位,防止节点压力过高,真实负载阈值的生效方式分为“软约束“和“硬约束“
软约束:节点 CPU、内存真实负载达到阈值后,新的任务优先被分配至真实负载未达到阈值的节点,但是该节点依然允许调度。
硬约束:节点 CPU、内存真实负载达到阈值后,该节点不允许调度新的任务。
效果验证
环境准备
-
创建1个负载 cpu:request 0.1 limit 6,使其调度在 “192.168.64.81” 这个节点上,节点CPU request的分配率:42.48% 实际占用率 76.9%
-
创建1个负载 cpu:request 4 limit 4,使其调度在 “192.168.64.219” 这个节点上,节点CPU request的分配率:91.15% 实际占用率 1.4%
验证未开启负载感知调度时,新建负载的调度情况
-
创建1个负载,CPU request 0.1 limit 0.1 内存 request 100MiB limit 100MiB
-
查看工作负载的调度情况,发现负载调度到了cpu request分配率低,但是实际CPU占用率高的节点 “192.168.64.81” 上
-
再添加1个副本,仍然调度到"192.168.64.81"上
验证开启负载感知调度时,新建负载的调度情况
-
开启负载感知调度,CPU 真实负载阈值设置为70% 硬约束
-
创建1个负载,CPU request 0.1 limit 0.1 内存 request 100MiB limit 100MiB
-
信息填写完整后,点击右上角yaml创建,添加一行shcedulerName: volcano
-
查看工作负载调度情况,发现负载调度到了cpu request分配率高,但是实际CPU占用率低的节点 “192.168.64.219” 上
-
再添加1个副本,仍然调度在节点 “192.168.64.219” 上
- 点赞
- 收藏
- 关注作者
评论(0)