人工智能术语翻译(二)
【摘要】 @[toc] 摘要人工智能术语翻译第二部分,包括E、F、G、H开头的词汇! E英文术语中文翻译常用缩写备注Eager Learning急切学习Early Stopping早停Earth-Mover’s Distance推土机距离EMDEcho State Network回声状态网络Edge边Edge Device边缘设备Effective Capacity有效容量Eigendecomposi...
@[toc]
摘要
人工智能术语翻译第二部分,包括E、F、G、H开头的词汇!
E
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|---|---|---|
Eager Learning | 急切学习 | ||
Early Stopping | 早停 | ||
Earth-Mover’s Distance | 推土机距离 | EMD | |
Echo State Network | 回声状态网络 | ||
Edge | 边 | ||
Edge Device | 边缘设备 | ||
Effective Capacity | 有效容量 | ||
Eigendecomposition | 特征分解 | ||
Eigenvalue | 特征值 | ||
Eigenvalue Decomposition | 特征值分解 | ||
Elastic Net Regularization | 弹性网络正则化 | ||
Elastic Weight Consolidation | 弹性权重巩固 | ||
Element-Wise Product | 逐元素积 | ||
Elementary Basis Vectors | 基本单位向量 | ||
Ellipsoid Method | 椭球法 | ||
Embedding | 嵌入 | ||
Embedding Lookup Table | 嵌入表 | ||
Emotional Analysis | 情绪分析 | ||
Empirical Conditional Entropy | 经验条件熵 | ||
Empirical Distribution | 经验分布 | ||
Empirical Entropy | 经验熵 | ||
Empirical Error | 经验误差 | ||
Empirical Frequency | 经验频率 | ||
Empirical Loss | 经验损失 | ||
Empirical Risk | 经验风险 | ||
Empirical Risk Minimization | 经验风险最小化 | ERM | |
Encoder | 编码器 | ||
Encoder-Decoder | 编码器-解码器(模型) | ||
Encoding | 编码 | ||
End-To-End | 端到端 | ||
End-To-End Learning | 端到端学习 | ||
End-To-End Memory Network | 端到端记忆网络 | Memn2N | |
Energy Function | 能量函数 | ||
Energy Gap | 能量差异 | ||
Energy-Based Model | 基于能量的模型 | ||
Ensemble | 集成 | ||
Ensemble Learning | 集成学习 | ||
Ensemble Pruning | 集成修剪 | ||
Entropy | 熵 | ||
Entropy Encoding | 熵编码 | ||
Environment | 环境 | ||
Episode | 回合 | ||
Episodic Task | 回合式任务 | ||
Epoch | 轮 | ||
Equal-Width Convolution | 等宽卷积 | ||
Equality Constraint | 等式约束 | ||
Equilibrium Distribution | 均衡分布 | ||
Equivariance | 等变 | ||
Equivariant Representations | 等变表示 | ||
Error | 误差 | ||
Error Backpropagation Algorithm | 误差反向传播算法 | ||
Error Backpropagation | 误差反向传播 | ||
Error Bar | 误差条 | ||
Error Correcting Output Codes | 纠错输出编码 | ECOC | |
Error Function | 误差函数 | ||
Error Metric | 误差度量 | ||
Error Rate | 错误率 | ||
Error-Ambiguity Decomposition | 误差-分歧分解 | ||
Estimation Error | 估计误差 | ||
Estimation Of Mathematical Expectation | 数学期望估计 | ||
Estimator | 估计/估计量 | ||
Euclidean Distance | 欧氏距离 | ||
Euclidean Norm | 欧几里得范数 | ||
Euclidean Space | 欧氏空间 | ||
Euler-Lagrange Equation | 欧拉-拉格朗日方程 | ||
Evaluation Criterion | 评价准则 | ||
Evidence | 证据 | ||
Evidence Lower Bound | 证据下界 | ELBO | |
Evolution | 演化 | ||
Evolutionary Computation | 演化计算 | ||
Exact | 确切的 | ||
Exact Inference | 精确推断 | ||
Example | 样例 | ||
Excess Error | 额外误差 | ||
Exchangeable | 可交换的 | ||
Expectation | 期望 | ||
Expectation Maximization Algorithm | 期望极大算法 | ||
Expectation Maximization | 期望最大化 | EM | |
Expectation Step | E步 | ||
Expected Error | 期望错误 | ||
Expected Loss | 期望损失 | ||
Expected Return | 期望回报 | ||
Expected Risk | 期望风险 | ||
Expected Value | 期望值 | ||
Experience | 经验 | ||
Experience Replay | 经验回放 | ||
Expert Network | 专家网络 | ||
Expert System | 专家系统 | ||
Explaining Away | 相消解释 | ||
Explaining Away Effect | 相消解释作用 | ||
Explanatory Factort | 解释因子 | ||
Explicit Density Model | 显式密度模型 | ||
Exploding Gradient | 梯度爆炸 | ||
Exploitation | 利用 | ||
Exploration | 探索 | ||
Exploration-Exploitation Dilemma | 探索-利用窘境 | ||
Exponential Decay | 指数衰减 | ||
Exponential Distribution | 指数分布 | ||
Exponential Linear Unit | 指数线性单元 | ELU | |
Exponential Loss | 指数损失 | ||
Exponential Loss Function | 指数损失函数 | ||
Exponentially Weighted Moving Average | 指数加权移动平均 | ||
Exposure Bias | 曝光偏差 | ||
External Memory | 外部记忆 | ||
Extreme Learning Machine | 超限学习机 | ELM | |
Eigenfunction | 特征函数 | ||
Electronegativity | 电负性 | ||
Elman | 埃尔曼 | ||
Empirical Models | 经验模型 | ||
Energy Derivatives | 能源衍生品 | 在DP模型中:能量的导数 | |
Energy Potentials | 能量潜力 | ||
Ensemble Methods | 集成方法 | ||
Entity Normalisation | 实体规范化 | ||
Ethical Considerations | 道德考虑 | ||
Euclidean Distances | 欧几里得距离 | ||
Evolutionary Algorithms | 进化算法 | EA | |
Evolutionary Method | 进化方法 | ||
Exchange–Correlation | 交换关联(的能量/泛函) | ||
Excited-State Potentials | 激发态能量 | ||
Expected Reduction In Distortion | 符合预期的失真减少 | ERD | |
Experimental Validation Data | 实验验证数据 | ||
Expert Systems | 专家系统 | ESS | |
Extended-Connectivity Circular Fingerprint | 扩展连接环形指纹 | ECFP | |
Extraction Techniques | 提取技术 |
F
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|---|---|---|
F Measure | F值 | ||
F-Score | F分数 | ||
Factor | 因子 | ||
Factor Analysis | 因子分析 | ||
Factor Graph | 因子图 | ||
Factor Loading | 因子负荷量 | ||
Factorization | 因子分解 | ||
Factorized | 分解的 | ||
Factors of Variation | 变差因素 | ||
False Negative | 假负例 | ||
False Positive | 假正例 | ||
False Positive Rate | 假正例率 | FPR | |
Fast Dropout | 快速暂退法 | ||
Fast Persistent Contrastive Divergence | 快速持续性对比散度 | ||
Fault-Tolerant Asynchronous Training | 容错异步训练 | ||
Feasible | 可行 | ||
Feature | 特征 | ||
Feature Engineering | 特征工程 | ||
Feature Extraction | 特征抽取 | ||
Feature Extractor | 特征提取器 | ||
Feature Function | 特征函数 | ||
Feature Map | 特征图 | ||
Feature Scaling Transform | 特征尺度变换 | ||
Feature Selection | 特征选择 | ||
Feature Space | 特征空间 | ||
Feature Vector | 特征向量 | ||
Featured Learning | 特征学习 | ||
Feedback | 反馈 | ||
Feedforward | 前馈 | ||
Feedforward Classifier | 前馈分类器 | ||
Feedforward Network | 前馈网络 | ||
Feedforward Neural Network | 前馈神经网络 | FNN | |
Few-Shot Learning | 少试学习 | ||
Fidelity | 逼真度 | ||
Field Programmable Gated Array | 现场可编程门阵列 | ||
Filter | 滤波器 | ||
Filter Method | 过滤式方法 | ||
Fine-Tuning | 微调 | ||
Finite Difference | 有限差分 | ||
First Layer | 第一层 | ||
First-Order Method | 一阶方法 | ||
First-Order Rule | 一阶规则 | ||
Fisher Information Matrix | Fisher信息矩阵 | ||
Fixed Point Equation | 不动点方程 | ||
Fixed-Point Arithmetic | 不动点运算 | ||
Flat Minima | 平坦最小值 | ||
Flip | 翻转 | ||
Flipping Output | 翻转法 | ||
Float-Point Arithmetic | 浮点运算 | ||
Fluctuation | 振荡 | ||
Focus Attention | 聚焦式注意力 | ||
Folk Theorem | 无名氏定理 | ||
Forget Gate | 遗忘门 | ||
Forward | 前向 | ||
Forward KL Divergence | 前向KL散度 | ||
Forward Mode Accumulation | 前向模式累加 | ||
Forward Propagation | 前向传播/正向传播 | ||
Forward Search | 前向搜索 | ||
Forward Stagewise Algorithm | 前向分步算法 | ||
Forward-Backward Algorithm | 前向-后向算法 | ||
Fourier Transform | 傅立叶变换 | ||
Fovea | 中央凹 | ||
Fractionally Strided Convolution | 微步卷积 | ||
Free Energy | 自由能 | ||
Frequentist | 频率主义学派 | ||
Frequentist Probability | 频率派概率 | ||
Frequentist Statistics | 频率派统计 | ||
Frobenius Norm | Frobenius 范数 | ||
Full | 全 | ||
Full Conditional Distribution | 满条件分布 | ||
Full Conditional Probability | 全条件概率 | ||
Full Padding | 全填充 | ||
Full Singular Value Decomposition | 完全奇异值分解 | ||
Full-Rank Matrix | 满秩矩阵 | ||
Fully Connected Layer | 全连接层 | ||
Fully Connected Neural Network | 全连接神经网络 | FCNN | |
Fully Convolutional Network | 全卷积网络 | FCN | |
Function | 函数 | ||
Functional | 泛函 | ||
Functional Derivative | 泛函导数 | ||
Functional Margin | 函数间隔 | ||
Functional Neuron | 功能神经元 | ||
Faber-Christensen-Huang-Lilienfeld | Faber-Christensen-Huang-Lilienfeld | FCHL | 四个人提出的化学结构量子机器学习方法 |
Facial Recognition | 面部识别 | ||
FAIR Data Principles | FAIR数据原则 | Findability可找寻 Accessibility可访问 Interoperability可交互 Reuse可再用 | |
False Negatives | 假阴性 | FNs | |
False Positives | 假阳性 | FPs | |
Fchl Representation | Fchl 表示 | ||
Feature Binarization | 特征二值化 | ||
Feature Transform | 特征变换 | ||
Feature Vectors | 特征向量 | ||
Features | 特征 | ||
Feed Back | 反馈 | ||
Feed-Forward Neural Networks | 前馈神经网络 | FFNN | |
Feedback Structure | 反馈结构 | ||
Final Evaluation | 最终评估 | ||
Findable, Accessible, Interoperable, Reusable | 可查找、可访问、可互操作、可重用 | FAIR | |
First-Principles | 第一性原理 | ||
Flow Rate | 流速 | ||
Forward Cross-Validation | 前向交叉验证 | ||
Forward Prediction | 前向预测 | ||
Forward Reaction Prediction | 前向反应预测 | ||
Fuzzy Logic | 模糊逻辑 | FL | |
Fuzzy Neural Networks | 模糊神经网络 | FNN | |
Feature Recalibration | 特征重新校准 | FNN |
G
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|---|---|---|
Gabor Function | Gabor函数 | ||
Gain Ratio | 増益率 | ||
Game Payoff | 博弈效用 | ||
Game Theory | 博弈论 | ||
Gamma Distribution | Gamma分布 | ||
Gate | 门 | ||
Gate Controlled RNN | 门控循环神经网络 | ||
Gated | 门控 | ||
Gated Control | 门控 | ||
Gated Recurrent Net | 门控循环网络 | GRN | |
Gated Recurrent Unit | 门控循环单元 | GRU | |
Gated RNN | 门控RNN | ||
Gater | 选通器 | ||
Gating Mechanism | 门控机制 | ||
Gaussian Distribution | 高斯分布 | ||
Gaussian Error Linear Unit | 高斯误差线性单元 | GELU | |
Gaussian Kernel | 高斯核 | ||
Gaussian Kernel Function | 高斯核函数 | ||
Gaussian Mixture Model | 高斯混合模型 | GMM | |
Gaussian Mixtures | 高斯混合(模型) | ||
Gaussian Output Distribution | 高斯输出分布 | ||
Gaussian Process | 高斯过程 | GP | |
Gaussian Process Regression | 高斯过程回归 | GPR | |
Gaussian RBM | 高斯RBM | ||
Gaussian-Bernoulli RBM | 高斯-伯努利RBM | ||
General Problem Solving | 通用问题求解 | ||
General Purpose GPU | 通用GPU | ||
Generalization Ability | 泛化能力 | ||
Generalization Error | 泛化误差 | ||
Generalization Error Bound | 泛化误差上界 | ||
Generalize | 泛化 | ||
Generalized Bregman Divergence | 一般化 Bregman 散度 | ||
Generalized Expectation Maximization | 广义期望极大 | GEM | |
Generalized Function | 广义函数 | ||
Generalized Lagrange Function | 广义拉格朗日函数 | ||
Generalized Lagrangian | 广义拉格朗日 | ||
Generalized Linear Model | 广义线性模型 | ||
Generalized Pseudolikelihood | 广义伪似然 | ||
Generalized Pseudolikelihood Estimator | 广义伪似然估计 | ||
Generalized Rayleigh Quotient | 广义瑞利商 | ||
Generalized Score Matching | 广义得分匹配 | ||
Generative Adversarial Framework | 生成式对抗框架 | ||
Generative Adversarial Network | 生成对抗网络 | ||
Generative Approach | 生成方法 | ||
Generative Model | 生成式模型 | ||
Generative Modeling | 生成式建模 | 机器学习 | |
Generative Moment Matching Network | 生成矩匹配网络 | ||
Generative Pre-Training | 生成式预训练 | GPT | |
Generative Stochastic Network | 生成随机网络 | ||
Generative Weight | 生成权重 | ||
Generator | 生成器 | ||
Generator Network | 生成器网络 | ||
Genetic Algorithm | 遗传算法 | GA | 机器学习 |
Geometric Margin | 几何间隔 | ||
Giant Magnetoresistance | 巨磁阻 | ||
Gibbs Distribution | 吉布斯分布 | ||
Gibbs Sampling | 吉布斯采样/吉布斯抽样 | ||
Gibbs Steps | 吉布斯步数 | ||
Gini Index | 基尼指数 | ||
Global Contrast Normalization | 全局对比度规范化 | ||
Global Markov Property | 全局马尔可夫性 | ||
Global Minima | 全局极小值 | ||
Global Minimizer | 全局极小解 | ||
Global Minimum | 全局最小 | ||
Global Optimization | 全局优化 | ||
Gradient | 梯度 | ||
Gradient Ascent | 梯度上升 | ||
Gradient Ascent Method | 梯度上升法 | ||
Gradient Boosting | 梯度提升 | ||
Gradient Boosting Tree | 梯度提升树 | ||
Gradient Clipping | 梯度截断 | ||
Gradient Descent | 梯度下降 | 机器学习 | |
Gradient Descent In One-Dimensional Space | 一维梯度下降 | ||
Gradient Descent Method | 梯度下降法 | ||
Gradient Energy Distribution | 梯度能量分布 | ||
Gradient Estimation | 梯度估计 | ||
Gradient Exploding Problem | 梯度爆炸问题 | ||
Gradient Field | 梯度场 | ||
Gradual Warmup | 逐渐预热 | ||
Gram Matrix | Gram 矩阵 | ||
Graph | 图 | ||
Graph Analytics | 图分析 | ||
Graph Attention Network | 图注意力网络 | GAT | |
Graph Convolutional Network | 图卷积神经网络/图卷积网络 | GCN | |
Graph Neural Network | 图神经网络 | GNN | |
Graph Theory | 图论 | ||
Graphical Model | 图模型 | GM | |
Graphics Processing Unit | 图形处理器 | ||
Greedy | 贪心 | ||
Greedy Algorithm | 贪心算法 | ||
Greedy Layer-Wise Pretraining | 贪心逐层预训练 | ||
Greedy Layer-Wise Training | 贪心逐层训练 | ||
Greedy Layer-Wise Unsupervised Pretraining | 贪心逐层无监督预训练 | ||
Greedy Search | 贪心搜索 | ||
Greedy Supervised Pretraining | 贪心监督预训练 | ||
Greedy Unsupervised Pretraining | 贪心无监督预训练 | ||
Grid Search | 网格搜索 | ||
Grid World | 网格世界 | ||
Ground Truth | 真实值 | ||
Growth Function | 增长函数 | ||
Ga-Based Approaches | 基于遗传算法的方法 | ||
Garbage In, Garbage Out | 无用数据入、无用数据出 | GIGO | |
Gas-Phase Networks | 气相网络 | ||
Gaussian Kernels | 高斯核 | ||
Gaussian-Type Structure Descriptors | 高斯型结构描述符 | GTSD | |
General Intelligence | 通用智能 | GI | |
Generalized Gradient Approximation | 广义梯度近似 | GGA | |
Generative Adversarial Networks | 生成对抗网络 | GAN | 机器学习 |
Gradient Boosting Decision Tree | 梯度提升决策树 | GBDT | |
Gradient-Based | 基于梯度的 | ||
Grain-Surface Networks | 粒面网络 | ||
Graph Convolutional | 图卷积 | GC | |
Graph Models | 图模型 | ||
Graph Neural Networks | 图神经网络 | GNNS | |
Graph-Based | 基于图形 | ||
Graph-Based Models | 基于图的模型 | ||
Graph-Based Neural Networks | 基于图的神经网络 | ||
Graph-Based Representation | 基于图的表示 | GB-GA | |
Graph-Convolutional Neural Network | 图卷积神经网络 | ||
Graphics Processing Units | 图形处理器 | ||
Gravimetric Polymerization Degree | 比重聚合度 |
H
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|---|---|---|
Hadamard Product | Hadamard积 | ||
Hamming Distance | 汉明距离 | ||
Hard Attention | 硬性注意力 | ||
Hard Clustering | 硬聚类 | ||
Hard Margin | 硬间隔 | ||
Hard Margin Maximization | 硬间隔最大化 | ||
Hard Mixture Of Experts | 硬专家混合体 | ||
Hard Tanh | 硬双曲正切函数 | ||
Hard Target | 硬目标 | ||
Hard Voting | 硬投票 | ||
Harmonic Mean | 调和平均 | ||
Harmonium | 簧风琴 | ||
Harmony | Harmony | ||
Harris Chain | 哈里斯链 | ||
Hausdorff Distance | 豪斯多夫距离 | ||
Hebbian Rule | 赫布法则 | ||
Hebbian Theory | 赫布理论 | ||
Helmholtz Machine | Helmholtz机 | ||
Hesse Matrix | 海赛矩阵 | ||
Hessian | Hessian | ||
Hessian Matrix | 黑塞矩阵 | ||
Heterogeneous Information Network | 异质信息网络 | HIN | |
Heteroscedastic | 异方差 | ||
Hidden Dynamic Model | 隐动态模型 | ||
Hidden Layer | 隐藏层 | ||
Hidden Markov Model | 隐马尔可夫模型 | HMM | |
Hidden State | 隐状态 | ||
Hidden Unit | 隐藏单元 | ||
Hidden Variable | 隐变量 | ||
Hierarchical Clustering | 层次聚类 | ||
Hierarchical Reinforcement Learning | 分层强化学习 | HRL | |
Hierarchical Softmax | 层序Softmax/层序软最大化 | ||
Hilbert Space | 希尔伯特空间 | ||
Hill Climbing | 爬山 | ||
Hinge Loss Function | 合页损失函数/Hinge损失函数 | ||
Histogram Method | 直方图方法 | ||
Hold-Out | 留出法 | ||
Homogeneous | 同质 | ||
Hopfield Network | Hopfield网络 | ||
Huffman Coding | 霍夫曼编码 | ||
Hybrid Computing | 混合计算 | ||
Hyperbolic Tangent Function | 双曲正切函数 | ||
Hyperparameter | 超参数 | ||
Hyperparameter Optimization | 超参数优化 | ||
Hyperplane | 超平面 | 数学 | |
Hypothesis | 假设 | ||
Hypothesis Space | 假设空间 | ||
Hypothesis Test | 假设检验 | ||
Hamiltonian Matrix | 哈密顿矩阵 | 物理 | |
Hamiltonian Operator | 哈密顿算符 | 物理 | |
Heterogeneous Data | 异构数据 | ||
Hidden Layers | 隐藏层 | ||
High Data Throughput | 高数据吞吐量 | ||
High Throughput | 高通量 | HT | |
High Throughput Screening | 高通量筛选 | HTS | |
High Variance Models | 高方差模型 | ||
High-Dimensional Data | 高维数据 | ||
High-Dimensional NN | 高维神经网络 | HDNN | |
High-Dimensional Objects | 高维对象 | ||
High-Throughput | 高通量 | ||
Higher-Dimensional Space | 高维空间 | 数学 | |
Higher-Dimensional Spectral Space | 高维光谱空间 | ||
Homogenization | 同质化 | ||
Homomorphic Encryption | 同态加密 | ||
Human Face Recognition | 人脸识别 | 机器学习 | |
Human-Encoded | 人工编码的 | ||
Hybrid Model | 混合模型 | ||
Hybrid Technique | 混合技术 | HM | |
Hybrid-Neural Model | 混合神经模型 | ||
Hyperparameter Opimization | 超参数优化 | ||
Hyperparameters | 超参数 | 机器学习 | |
Hyperplanes Separate | 超平面分离 |
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)