人工智能术语翻译(一)
【摘要】 @[toc] 摘要整理了一些人工智能的术语和翻译。 Number英文术语中文翻译常用缩写0-1 loss0-1损失函数 A英文术语中文翻译常用缩写Absolute Loss Function绝对损失函数Absolute Value Rectification绝对值整流Accept-Reject Sampling Method接受-拒绝抽样法/接受-拒绝采样法Acceptance Distri...
@[toc]
摘要
整理了一些人工智能的术语和翻译。
Number
英文术语 | 中文翻译 | 常用缩写 |
---|---|---|
0-1 loss | 0-1损失函数 |
A
英文术语 | 中文翻译 | 常用缩写 |
---|---|---|
Absolute Loss Function | 绝对损失函数 | |
Absolute Value Rectification | 绝对值整流 | |
Accept-Reject Sampling Method | 接受-拒绝抽样法/接受-拒绝采样法 | |
Acceptance Distribution | 接受分布 | |
Access Parameters | 访问参数 | |
Accumulated Error Backpropagation | 累积误差反向传播 | |
Accuracy | 准确率 | ACC |
Acoustic | 声学 | |
Acoustic Modeling | 声学建模 | |
Acquisition Function | 采集函数 | |
Action | 动作 | |
Action Value Function | 动作价值函数 | |
Actionism | 行为主义 | |
Activation | 活性值 | |
Activation Function | 激活函数 | |
Active Learning | 主动学习 | |
Actor | 演员 | |
Actor-Critic Algorithm | 演员-评论员算法 | |
Actor-Critic Method | 演员-评论员法 | |
Adaptive Bitrate Algorithm | 自适应比特率算法 | ABR |
Adaptive Boosting | 自适应提升 | AdaBoost |
Adaptive Gradient Algorithm | AdaGrad | |
Adaptive Moment Estimation Algorithm | Adam算法 | Adam |
Adaptive Resonance Theory | 自适应谐振理论 | ART |
Additive Model | 加性模型 | |
Adversarial | 对抗 | |
Adversarial Learning | 对抗学习 | |
Adversarial Example | 对抗样本 | |
Adversarial Networks | 对抗网络 | |
Adversarial Training | 对抗训练 | |
Affine Layer | 仿射层 | |
Affine Transformation | 仿射变换 | |
Affinity Matrix | 亲和矩阵 | |
Agent | 智能体 | |
Agglomerative | 聚合 | |
Agnostic PAC Learnable | 不可知PAC可学习 | |
Algorithm | 算法 | |
Almost Everywhere | 几乎处处 | |
Almost Sure | 几乎必然 | |
Almost Sure Convergence | 几乎必然收敛 | |
Alpha-Beta Pruning | α-β修剪法 | |
Alternative Splicing Dataset | 选择性剪接数据集 | |
Ambiguity | 分歧 | |
Analytic Gradient | 解析梯度 | |
Ancestral Sampling | 原始采样 | |
Annealed Importance Sampling | 退火重要采样 | |
Anomaly Detection | 异常检测 | |
Aperiodic | 非周期的 | |
Aperiodic Graph | 非周期性图 | |
Application-Specific Integrated Circuit | 专用集成电路 | |
Approximate Bayesian Computation | 近似贝叶斯计算 | |
Approximate Dynamic Programming | 近似动态规划 | |
Approximate Inference | 近似推断 | |
Approximation | 近似 | |
Approximation Error | 近似误差 | |
Architecture | 架构 | |
Area Under ROC Curve | AUC(ROC曲线下方面积,度量分类模型好坏的标准) | AUC |
Arithmetic Coding | 算术编码 | |
Artificial General Intelligence | 通用人工智能 | AGI |
Artificial Intelligence | 人工智能 | AI |
Artificial Neural Network | 人工神经网络 | ANN |
Artificial Neuron | 人工神经元 | |
Association Analysis | 关联分析 | |
Associative Memory | 联想记忆 | |
Associative Memory Model | 联想记忆模型 | |
Asymptotically Unbiased | 渐近无偏 | |
Asynchronous Stochastic Gradient Descent | 异步随机梯度下降 | ASGD |
Asynchronous Stochastic Gradient Algorithm | 异步随机梯度算法 | |
Asynchronous | 异步 | |
Atrous Convolution | 空洞卷积 | |
Attention | 注意力 | |
Attention Cue | 注意力提示 | |
Attention Distribution | 注意力分布 | |
Attention Mechanism | 注意力机制 | |
Attention Model | 注意力模型 | |
Attractor | 吸引点 | |
Attribute | 属性 | |
Attribute Conditional Independence Assumption | 属性条件独立性假设 | |
Attribute Space | 属性空间 | |
Attribute Value | 属性值 | |
Augmented Lagrangian | 增广拉格朗日法 | |
Auto-Regressive Network | 自回归网络 | |
Autoencoder | 自编码器 | AE |
Automatic Differentiation | 自动微分 | AD |
Automatic Speech Recognition | 自动语音识别 | ASR |
Automatic Summarization | 自动摘要 | |
Autoregressive Generative Model | 自回归生成模型 | |
Autoregressive Model | 自回归模型 | AR |
Autoregressive Process | 自回归过程 | |
Average Gradient | 平均梯度 | |
Average Pooling Layer | 平均汇聚层 | |
Average-Pooling | 平均汇聚 | |
Averaged Perceptron | 平均感知器 | |
Aberration-Corrected | 像差矫正 | |
Active Machine Learning | 主动机器学习 | |
Adaptive Fuzzy Neural Network | 自适应模糊神经网络 | |
Adaptive Sampling | 自适应采样 | |
Admet Evaluation | 毒性评估 | |
Alexnet | AlexNet | |
Alphago | 阿尔法狗 | |
AlphaZero | AlphaZero | 阿尔法狗 的升级版本 |
Adaptive Neuro Fuzzy Inference System | 自适应神经模糊推理系统 | ANFIS |
Approximate Probabilistic Models | 近似概率模型 | |
Artificial Neurons | 人工神经元 | |
Artificial Synapses | 人工突触 | |
Attention-Based | 基于注意力(机制)的 | |
Automating Synthetic Planning | 自动化综合规划 | |
Automation | 自动化 | |
Autonomous Decision-Making | 自主决策 | |
Automated Machine Learning | 自动机器学习 | AutoML |
B
英文术语 | 中文翻译 | 常用缩写 |
---|---|---|
Back Propagation | 反向传播 | BP |
Back Propagation Algorithm | 反向传播算法 | |
Back Propagation Through Time | 随时间反向传播 | BPTT |
Back-Off | 回退 | |
Backward | 后向 | |
Backward Induction | 反向归纳 | |
Backward Search | 反向搜索 | |
Bag of Words | 词袋 | BOW |
Bagging | 袋装 | |
Bandit | 赌博机/老虎机 | |
Bandpass Filter | 带通滤波器 | |
Base | 基 | |
Base Classifier | 基分类器 | |
Base Learner | 基学习器 | |
Base Learning Algorithm | 基学习算法 | |
Base Vector | 基向量 | |
Baseline | 基准 | |
Basin of Attraction | 吸引域 | |
Batch | 批量 | |
Batch Gradient Descent | 批量梯度下降法 | BGD |
Batch Learning | 批量学习 | |
Batch Normalization | 批量规范化 | BN |
Batch Size | 批量大小 | |
Baum-Welch Algorithm | Baum-Welch算法 | |
Bayes Classifier | 贝叶斯分类器 | |
Bayes Decision Rule | 贝叶斯决策准则 | |
Bayes Error | 贝叶斯误差 | |
Bayes Model Averaging | 贝叶斯模型平均 | BMA |
Bayes Optimal Classifier | 贝叶斯最优分类器 | |
Bayes Risk | 贝叶斯风险 | |
Bayes’ Rule | 贝叶斯规则 | |
Bayes’ Theorem | 贝叶斯定理 | |
Bayesian Decision Theory | 贝叶斯决策理论 | |
Bayesian Estimation | 贝叶斯估计 | |
Bayesian Inference | 贝叶斯推断 | |
Bayesian Learning | 贝叶斯学习 | |
Bayesian Linear Regression | 贝叶斯线性回归 | |
Bayesian Network | 贝叶斯网/贝叶斯网络 | |
Bayesian Optimization | 贝叶斯优化 | |
Bayesian Probability | 贝叶斯概率 | |
Bayesian Statistics | 贝叶斯统计 | |
Beam Search | 束搜索 | |
Benchmark | 基准 | |
Belief Network | 信念网/信念网络 | BN |
Belief Propagation | 信念传播 | BP |
Bellman Equation | 贝尔曼方程 | |
Bellman Optimality Equation | 贝尔曼最优方程 | |
Bernoulli Distribution | 伯努利分布 | |
Bernoulli Output Distribution | 伯努利输出分布 | |
Best-Arm Problem | 最优臂问题 | |
Beta Distribution | 贝塔分布 | |
Between-Class Scatter Matrix | 类间散度矩阵 | |
BFGS | BFGS | |
Bi-Directional Long-Short Term Memory | 双向长短期记忆 | Bi-LSTM |
Bi-Partition | 二分法 | |
Bias | 偏差/偏置 | |
Bias In Affine Function | 偏置 | |
Bias In Statistics | 偏差 | |
Bias Shift | 偏置偏移 | |
Bias-Variance Decomposition | 偏差 - 方差分解 | |
Bias-Variance Dilemma | 偏差 - 方差困境 | |
Biased | 有偏 | |
Biased Importance Sampling | 有偏重要采样 | |
Bidirectional Language Model | 双向语言模型 | |
Bidirectional Recurrent Neural Network | 双向循环神经网络 | Bi-RNN |
Bigram | 二元语法 | |
Bilingual Evaluation Understudy | BLEU | |
Binary Classification | 二分类 | |
Binary Relation | 二元关系 | |
Binary Sparse Coding | 二值稀疏编码 | |
Binomial Distribution | 二项分布 | |
Binomial Logistic Regression Model | 二项对数几率回归 | |
Binomial Test | 二项检验 | |
Biological Plausibility | 生物学合理性 | |
Bit | 比特 | |
Block | 块 | |
Block Coordinate Descent | 块坐标下降 | |
Block Gibbs Sampling | 块吉布斯采样 | |
Boilerplate Code | 样板代码 | |
Boltzmann | 玻尔兹曼 | |
Boltzmann Distribution | 玻尔兹曼分布 | |
Boltzmann Factor | 玻尔兹曼因子 | |
Boltzmann Machine | 玻尔兹曼机 | |
Boosting | 提升方法 | Boosting(一种模型训练加速方式) |
Boosting Tree | 提升树 | |
Bootstrap Aggregating | 装袋算法 | Bagging |
Bootstrap Sampling | 自助采样法 | |
Bootstrapping | 自助法/自举法 | |
Bottleneck Layer | 瓶颈层 | |
Bottom-Up | 自下而上 | |
Bounding Boxes | 边界框 | |
Break-Event Point | 平衡点 | BEP |
Bridge Sampling | 桥式采样 | |
Broadcasting | 广播 | |
Broyden’s Algorithm | Broyden类算法 | |
Bucketing | 分桶 | |
Burn-In Period | 预烧期 | |
Burning-In | 磨合 | |
B-Clustering Algorithms | B树聚类算法 | |
Balanced Accuracy | 平衡精度 | |
Bandgap Energy | 带隙能量 | |
Baseline Test | 基准测试 | |
Basin Hopping | 盆地跳跃(算法) | |
Bayesian Approach | 贝叶斯方法 | |
Bayesian Induction | 贝叶斯归纳 | |
Bayesian Mcmc Methods | 贝叶斯马尔可夫链蒙特卡洛方法 | |
Bayesian Methods | 贝叶斯方法 | |
Bayesian Molecular | 贝叶斯分子(设计方法) | |
Bayesian Prior | 贝叶斯先验 | |
Bayesian Program Learning | 贝叶斯程序学习 | BPL |
Bayesian Regularized Neural Network | 贝叶斯正则化神经网络 | |
Beam-Scanning | 波束扫描 | |
Best Separates | 最优分离 | |
Biased Dataset | 有偏数据集 | |
Bit Collisions | 字节碰撞/冲突 | |
Black Box | 黑盒子 | |
Black-Box Attack | 黑盒攻击 | |
Bonding Environments | 成键环境 | |
Bonferroni Correction | 邦弗朗尼校正 | |
Bootstrap Aggregation | 引导聚合 | bagging |
Broyden–Fletcher–Goldfarb–Shanno | BFGS(算法) | BFGS |
Buchwald−Hartwig Cross-Coupling | Buchwald–Hartwig 偶联(反应) | |
bilevel optimization | 双层规划 |
C
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|---|---|---|
Calculus | 微积分 | ||
Calculus of Variations | 变分法 | ||
Calibration | 校准 | ||
Canonical | 正则的 | ||
Canonical Correlation Analysis | 典型相关分析 | CCA | |
Capacity | 容量 | ||
Cartesian Coordinate | 笛卡尔坐标 | ||
Cascade | 级联 | ||
Cascade-Correlation | 级联相关 | ||
Catastrophic Forgetting | 灾难性遗忘 | ||
Categorical Attribute | 分类属性 | ||
Categorical Distribution | 类别分布 | ||
Causal Factor | 因果因子 | ||
Causal Modeling | 因果模型 | ||
Cell | 单元 | ||
Centered Difference | 中心差分 | ||
Central Limit Theorem | 中心极限定理 | ||
Chain Rule | 链式法则 | ||
Channel | 通道 | ||
Chaos | 混沌 | ||
Chebyshev Distance | 切比雪夫距离 | ||
Chord | 弦 | ||
Chordal Graph | 弦图 | ||
City Block Distance | 街区距离 | ||
Class | 类别 | ||
Class Label | 类标记 | ||
Class-Conditional Probability | 类条件概率 | ||
Class-Imbalance | 类别不平衡 | ||
Classification | 分类 | ||
Classification And Regression Tree | 分类与回归树 | CART | |
Classifier | 分类器 | ||
Clip Gradient | 梯度截断 | ||
Clipping The Gradient | 截断梯度 | ||
Clique | 团 | ||
Clique Potential | 团势能 | ||
Clockwork RNN | 时钟循环神经网络 | ||
Closed Form Solution | 闭式解 | ||
Closed-Form | 闭式 | ||
Cluster | 簇 | ||
Cluster Analysis | 聚类分析 | ||
Cluster Assumption | 聚类假设 | ||
Clustering | 聚类 | ||
Clustering Ensemble | 聚类集成 | ||
Co-Adapting | 共适应 | ||
Co-Occurrence | 共现 | ||
Co-Occurrence Frequency | 共现词频 | ||
Co-Training | 协同训练 | ||
Code | 编码 | ||
Codebook Learning | 码书学习 | ||
Coding Matrix | 编码矩阵 | ||
Collaborative Filtering | 协同过滤 | ||
Collapsed Gibbs Sampling | 收缩的吉布斯抽样 | ||
Collinearity | 共线性 | ||
COLT | 国际学习理论会议 | ||
Column | 列 | ||
Column Space | 列空间 | ||
Combinatorial Optimization | 组合优化 | ||
Committee-Based Learning | 基于委员会的学习 | ||
Common Cause | 共因 | ||
Common Parent | 同父 | ||
Compact Singular Value Decomposition | 紧奇异值分解 | ||
Competitive Learning | 竞争型学习 | ||
Complementary Slackness | 互补松弛 | ||
Complete Graph | 完全图 | ||
Complete Linkage | 完全连接 | ||
Complete-Data | 完全数据 | ||
Complex Cell | 复杂细胞 | ||
Component Learner | 组件学习器 | ||
Compositionality | 组合性 | ||
Comprehensibility | 可解释性 | ||
Computation Cost | 计算代价 | ||
Computation Graph | 计算图 | ||
Computational Learning Theory | 计算学习理论 | ||
Computational Linguistics | 计算语言学 | ||
Computer Vision | 计算机视觉 | ||
Concatenate | 连结 | ||
Concept Class | 概念类 | ||
Concept Drift | 概念漂移 | ||
Concept Learning System | 概念学习系统 | CLS | |
Concept Shift | 概念偏移 | ||
Conditional Computation | 条件计算 | ||
Conditional Entropy | 条件熵 | ||
Conditional Independence | 条件独立 | ||
Conditional Language Model | 条件语言模型 | ||
Conditional Mutual Information | 条件互信息 | ||
Conditional Probability | 条件概率 | ||
Conditional Probability Density Function | 条件概率密度函数 | ||
Conditional Probability Distribution | 条件概率分布 | ||
Conditional Probability Table | 条件概率表 | CPT | |
Conditional Random Field | 条件随机场 | CRF | |
Conditional Risk | 条件风险 | ||
Conditionally Independent | 条件独立的 | ||
Conference On Neural Information Processing Systems | 国际神经信息处理系统会议 | NeurIPS | |
Confidence | 置信度 | ||
Conflict Resolution | 冲突消解 | ||
Confusion Matrix | 混淆矩阵 | 机器学习 | |
Conjugate | 共轭 | ||
Conjugate Directions | 共轭方向 | ||
Conjugate Distribution | 共轭分布 | ||
Conjugate Gradient | 共轭梯度 | 优化,数学 | |
Conjugate Prior | 共轭先验 | ||
Connection Weight | 连接权 | ||
Connectionism | 连接主义 | ||
Consistency | 一致性 | ||
Consistency Convergence | 一致性收敛 | ||
Constrained Optimization | 约束优化 | ||
Content-Addressable Memory | 基于内容寻址的存储 | CAM | |
Context Variable | 上下文变量 | ||
Context Vector | 上下文向量 | ||
Context Window | 上下文窗口 | ||
Context Word | 上下文词 | ||
Context-Specific Independences | 特定上下文独立 | ||
Contextual Bandit | 上下文赌博机/上下文老虎机 | ||
Contextualized Representation | 基于上下文的表示 | ||
Contingency Table | 列联表 | ||
Continous Bag-Of-Words Model | 连续词袋模型 | CBOW | |
Continuation Method | 延拓法 | ||
Continuing Task | 持续式任务 | ||
Continuous Attribute | 连续属性 | ||
Continuous Learning | 持续学习 | ||
Continuous Optimization | 连续优化 | ||
Contractive | 收缩 | ||
Contractive Autoencoder | 收缩自编码器 | ||
Contractive Neural Network | 收缩神经网络 | ||
Contrastive Divergence | 对比散度 | ||
Controller | 控制器 | ||
Convergence | 收敛 | ||
Conversational Agent | 会话智能体 | ||
Convex Optimization | 凸优化 | ||
Convex Quadratic Programming | 凸二次规划 | ||
Convex Set | 凸集 | ||
Convexity | 凸性 | ||
Convolution | 卷积 | ||
Convolutional Boltzmann Machine | 卷积玻尔兹曼机 | ||
Convolutional Deep Belief Network | 卷积深度信念网络 | CDBN | |
Convolutional Kernel | 卷积核 | ||
Convolutional Network | 卷积网络 | ||
Convolutional Neural Network | 卷积神经网络 | CNN | |
Coordinate | 坐标 | ||
Coordinate Ascent | 坐标上升 | ||
Coordinate Descent | 坐标下降 | ||
Coparent | 共父 | ||
Corpus | 语料库 | ||
Correlation | 相关系数 | ||
Correlation Coefficient | 相关系数 | ||
Cosine | 余弦 | ||
Cosine Decay | 余弦衰减 | ||
Cosine Similarity | 余弦相似度 | ||
Cost | 代价 | ||
Cost Curve | 代价曲线 | ||
Cost Function | 代价函数 | ||
Cost Matrix | 代价矩阵 | ||
Cost-Sensitive | 代价敏感 | ||
Covariance | 协方差 | ||
Covariance Matrix | 协方差矩阵 | ||
Covariance RBM | 协方差RBM | ||
Covariate Shift | 协变量偏移 | ||
Coverage | 覆盖 | ||
Credit Assignment Problem | 贡献度分配问题 | CAP | |
Criterion | 准则 | ||
Critic | 评论员 | ||
Critic Network | 评价网络 | ||
Critical Point | 临界点 | ||
Critical Temperatures | 临界温度 | ||
Cross Correlation | 互相关 | ||
Cross Entropy | 交叉熵 | ||
Cross Validation | 交叉验证 | ||
Cross-Entropy Loss Function | 交叉熵损失函数 | ||
Crowdsourcing | 众包 | ||
Cumulative Distribution Function | 累积分布函数 | CDF | |
Cumulative Function | 累积函数 | ||
Curriculum Learning | 课程学习 | ||
Curse of Dimensionality | 维数灾难 | ||
Curvature | 曲率 | ||
Curve-Fitting | 曲线拟合 | ||
Cut Point | 截断点 | ||
Cutting Plane Algorithm | 割平面法 | ||
Cybernetics | 控制论 | ||
Cyclic Learning Rate | 循环学习率 | ||
C4.5 Algorithm | C4.5 算法 | 一种决策树算法,数据挖掘 | |
Calculation Uncertainties | 计算不确定性 | ||
Canonical Ml Methods | 经典机器学习方法 | ||
Cartesian Distance Vector | 笛卡尔距离向量 | ||
CASP | 国际蛋白质结构预测竞赛 | 生物 | |
Categorical Data | 分类数据 | ||
Categorization Algorithms | 分类算法 | ||
ChemDataExtractor | 化学数据提取器 | CDE | |
Chi-Squared | 卡方(分布) | ||
Classification Model | 分类模型 | ||
Cluster Resolution Feature Selection | 聚类分辨率特征选择 | CR-FS | |
Cluster-Based Splitting | 基于聚类的分离方法 | ||
Clustering Methods | 聚类方法 | ||
Code Pipeline | 代码流水线 | ||
Coefficient of Determination | 决定系数 | r^2 or R^2 | 统计 |
Combined Gradient | 组合梯度(算法) | 机器学习 | |
Complex Data | 复合数据 | ||
Computational Cost | 计算成本 | ||
Computational Optimisation | 计算优化 | ||
Computational Science | 计算科学 | ||
Computational Toxicology | 计算毒理学 | ||
Computer Science | 计算机科学 | ||
Computer Simulations | 计算机模拟 | ||
Computer-Aided | 计算机辅助 | ||
Constraint | 约束 | ||
Core-Loss Spectrum | (电子能量损失谱中的)高能区域 | ||
Coulomb Matrix | 库仑矩阵 | ||
Coupled-Cluster Predictions | 耦合簇预测 | ||
Cross-Validated Coefficient of Determination | 交叉验证的决定系数 | q^2 or Q^2 | |
Cross-Validation | 交叉验证 | CV | |
Crowd-Sourcing | 众包 | 商业模式 | |
Cut-Points | 切点 | ||
Cutoff Radial Function | 截断径向函数 | ||
Carbon Footprint | 碳足迹 | ||
corruption | 损坏,篡改 |
D
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|---|---|---|
Damping | 衰减 | ||
Damping Factor | 阻尼因子 | ||
Data | 数据 | ||
Data Augmentation | 数据增强 | ||
Data Generating Distribution | 数据生成分布 | ||
Data Generating Process | 数据生成过程 | ||
Data Instance | 数据样本 | ||
Data Mining | 数据挖掘 | ||
Data Parallelism | 数据并行 | ||
Data Point | 数据点 | ||
Data Preprocessing | 数据预处理 | ||
Data Set | 数据集 | ||
Data Wrangling | 数据整理 | ||
Dataset Augmentation | 数据集增强 | ||
Davidon-Fletcher-Powell | DFP | ||
Debugging Strategy | 调试策略 | ||
Decision Boundary | 决策边界 | ||
Decision Function | 决策函数 | ||
Decision Stump | 决策树桩 | ||
Decision Surface | 决策平面 | ||
Decision Tree | 决策树 | DT | |
Decoder | 解码器 | ||
Decoding | 解码 | ||
Decompose | 分解 | ||
Deconvolution | 反卷积 | ||
Deconvolutional Network | 反卷积网络 | ||
Deduction | 演绎 | ||
Deep Belief Network | 深度信念网络 | DBN | |
Deep Boltzmann Machine | 深度玻尔兹曼机 | DBM | |
Deep Circuit | 深度回路 | ||
Deep Convolutional Generative Adversarial Network | 深度卷积生成对抗网络 | DCGAN | |
Deep Feedforward Network | 深度前馈网络 | ||
Deep Generative Model | 深度生成模型 | ||
Deep Learning | 深度学习 | DL | |
Deep Model | 深度模型 | ||
Deep Network | 深度网络 | ||
Deep Neural Network | 深度神经网络 | DNN | |
Deep Q-Learning | 深度 Q 学习 | ||
Deep Q-Network | 深度Q网络 | DQN | |
Deep Reinforcement Learning | 深度强化学习 | ||
Deep Sequence Model | 深度序列模型 | ||
Default Rule | 默认规则 | ||
Definite Integral | 定积分 | ||
Degree Of Belief | 信任度 | ||
Delta-Bar-Delta | Delta-Bar-Delta | ||
Denoising | 去噪 | ||
Denoising Autoencoder | 去噪自编码器 | ||
Denoising Score Matching | 去躁分数匹配 | ||
Denominator Layout | 分母布局 | ||
Dense | 稠密 | ||
Density Estimation | 密度估计 | ||
Density-Based Clustering | 密度聚类 | ||
Dependency | 依赖 | ||
Depth | 深度 | ||
Derivative | 导数 | ||
Description | 描述 | ||
Design Matrix | 设计矩阵 | ||
Detailed Balance | 细致平衡 | ||
Detailed Balance Equation | 细致平衡方程 | ||
Detector Stage | 探测级 | ||
Determinant | 行列式 | ||
Deterministic | 确定性 | ||
Deterministic Model | 确定性模型 | ||
Deterministic Policy | 确定性策略 | ||
Development Set | 开发集 | ||
Diagonal Matrix | 对角矩阵 | ||
Diameter | 直径 | ||
Dictionary | 字典 | ||
Dictionary Learning | 字典学习 | ||
Differentiable Function | 可微函数 | ||
Differentiable Neural Computer | 可微分神经计算机 | ||
Differential Entropy | 微分熵 | ||
Differential Equation | 微分方程 | ||
Differentiation | 微分 | ||
Dilated Convolution | 膨胀卷积 | ||
Dimension | 维度 | ||
Dimension Reduction | 降维 | ||
Dimensionality Reduction Algorithm | 降维算法 | ||
Dirac Delta Function | Dirac Delta函数 | ||
Dirac Distribution | Dirac分布 | ||
Directed | 有向 | ||
Directed Acyclic Graph | 有向非循环图 | DAG | |
Directed Edge | 有向边 | ||
Directed Graph | 有向图 | ||
Directed Graphical Model | 有向图模型 | ||
Directed Model | 有向模型 | ||
Directed Separation | 有向分离 | ||
Directional Derivative | 方向导数 | ||
Dirichlet Distribution | 狄利克雷分布 | ||
Disagreement Measure | 不合度量 | ||
Disagreement-Based Methods | 基于分歧的方法 | ||
Discount Factor | 衰减系数 | ||
Discounted Return | 折扣回报 | ||
Discrete Optimization | 离散优化 | ||
Discriminant Function | 判别函数 | ||
Discriminative Approach | 判别方法 | ||
Discriminative Model | 判别式模型 | ||
Discriminative RBM | 判别RBM | ||
Discriminator | 判别器 | ||
Discriminator Network | 判别网络 | ||
Distance | 距离 | ||
Distance Measure | 距离度量 | ||
Distance Metric Learning | 距离度量学习 | ||
Distributed Representation | 分布式表示 | ||
Distribution | 分布 | ||
Diverge | 发散 | ||
Divergence | 散度 | ||
Diversity | 多样性 | ||
Diversity Measure | 多样性度量/差异性度量 | ||
Divide-And-Conquer | 分而治之 | ||
Divisive | 分裂 | ||
Domain | 领域 | ||
Domain Adaptation | 领域自适应 | ||
Dominant Eigenvalue | 主特征值 | ||
Dominant Eigenvector | 主特征向量 | ||
Dominant Strategy | 占优策略 | ||
Dot Product | 点积 | ||
Double Backprop | 双反向传播 | ||
Doubly Block Circulant Matrix | 双重分块循环矩阵 | ||
Down Sampling | 下采样 | ||
Downstream Task | 下游任务 | ||
Dropout | 暂退法 | ||
Dropout Boosting | 暂退Boosting | ||
Dropout Mask | 暂退掩码 | ||
Dropout Method | 暂退法 | ||
Dual Algorithm | 对偶算法 | ||
Dual Problem | 对偶问题 | ||
Dummy Node | 哑结点 | ||
Dying ReLU Problem | 死亡ReLU问题 | ||
Dynamic Bayesian Network | 动态贝叶斯网络 | ||
Dynamic Computational Graph | 动态计算图 | ||
Dynamic Fusion | 动态融合 | ||
Dynamic Programming | 动态规划 | ||
Dynamic Structure | 动态结构 | ||
Dynamical System | 动力系统 | ||
Data Availability | 数据可用性 | ||
Data Cleaning | 数据清洗 | ||
Data Collection | 数据采集 | ||
Data Considerations | 数据注意事项 | ||
Data Curation | 数据监管 | ||
Data Disparity | 数据差异 | ||
Data Dredging | 数据挖掘 | ||
Data Imputation | 数据填补 | ||
Data Labels | 数据标签 | ||
Data Leakage | 数据泄露 | ||
Data Pre-Processing | 数据预处理 | ||
Data Processing | 数据处理 | ||
Data Quality | 数据质量 | ||
Data Reduction | 数据缩减 | ||
Data Representation | 数据表示 | ||
Data Selection | 数据选择 | ||
Data Sources | 数据源 | ||
Data Splitting | 数据拆分 | ||
Data Transformation | 数据转换 | ||
Data-Driven | 数据驱动 | ||
Data-Driven Decision-Making | 数据驱动的决策 | ||
Data-Driven Methods | 数据驱动的方法 | ||
Data-Driven Spectral Analysis | 数据驱动的光谱分析 | ||
Data-Mining | 数据挖掘 | ||
Database | 数据库 | ||
DE Algorithm | 差分进化算法 | ||
Deeplift | DeepLift模型 | ||
Dendrogram | 树状图 | ||
Density Functional Theory | 密度泛函理论 | DFT | |
Density-Based Spatial Clustering Of Applications With Noise | DBSCAN密度聚类 | DBSCAN | |
Descriptor | 描述符 | ||
DFT Calculations | DFT计算 | ||
Dice Similarity | 戴斯相似度 | ||
Differential Evolution | 差分进化 | DE | |
Dimensionality Reduction | 降维 | ||
Direct Neural Network Modeling | 正向神经网络建模 | ||
Discrete Manner | 离散方式 | ||
Discrete Quanta | 离散量子 | ||
Discretization | 离散化 | ||
Distillation | 蒸馏 | ||
Dynamic Datasets | 动态数据集 | ||
Dynamic Filter Networks | 动态过滤网络 | ||
Dynamic Sampling | 动态采样 | ||
Dynamics Simulations | 动力学模拟 |
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)