Sklearn中级教程——特征选择

举报
Echo_Wish 发表于 2024/01/19 08:50:51 2024/01/19
【摘要】 sklearn中级特征选择教程在机器学习中,特征选择是一个重要的步骤,它可以帮助我们从原始数据中选择出最具预测性能的特征,以提高模型的准确性和效率。在本教程中,我们将学习如何使用scikit-learn(sklearn)库中的特征选择方法来进行特征选择。 什么是特征选择?特征选择是从原始特征集中选择出对目标变量具有最大预测能力的特征子集的过程。通过选择相关特征,我们可以降低模型的复杂性、减...

sklearn中级特征选择教程

在机器学习中,特征选择是一个重要的步骤,它可以帮助我们从原始数据中选择出最具预测性能的特征,以提高模型的准确性和效率。在本教程中,我们将学习如何使用scikit-learn(sklearn)库中的特征选择方法来进行特征选择。

什么是特征选择?

特征选择是从原始特征集中选择出对目标变量具有最大预测能力的特征子集的过程。通过选择相关特征,我们可以降低模型的复杂性、减少过拟合的风险,并提高模型的解释性能。

sklearn中的特征选择方法

sklearn库提供了多种特征选择方法,包括过滤式方法、包裹式方法和嵌入式方法。下面我们将介绍其中一些常用的方法。

1. 方差选择法

方差选择法是一种简单的特征选择方法,它通过选择具有较高方差的特征来进行特征选择。方差选择法适用于特征值是连续型变量的情况。

from sklearn.feature_selection import VarianceThreshold

selector = VarianceThreshold(threshold=0.1)
X_selected = selector.fit_transform(X)

2. 相关系数法

相关系数法基于特征与目标变量之间的相关性来进行特征选择。它可以使用Pearson相关系数、Spearman相关系数或卡方检验等不同的相关性度量方法。

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2

selector = SelectKBest(chi2, k=5)
X_selected = selector.fit_transform(X, y)

3. 递归特征消除法

递归特征消除法是一种迭代的特征选择方法,它反复训练模型,每次迭代都消除权重最小的特征,直到达到指定的特征数量。

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

estimator = LogisticRegression()
selector = RFE(estimator, n_features_to_select=5)
X_selected = selector.fit_transform(X, y)

4. L1正则化

L1正则化是一种稀疏化特征选择方法,它通过对特征权重进行L1惩罚来实现。L1正则化可以使得部分特征的权重变为0,从而实现特征选择。

from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import Lasso

estimator = Lasso()
selector = SelectFromModel(estimator)
X_selected = selector.fit_transform(X, y)

结语

特征选择是机器学习中的重要步骤,它可以帮助我们提高模型的准确性和效率。在本教程中,我们介绍了sklearn库中几种常用的特征选择方法,包括方差选择法、相关系数法、递归特征消除法和L1正则化。通过使用这些方法,我们可以从原始数据中选择出最具预测性能的特征子集,从而提高我们的机器学习模型。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。