如何获取局域网内海康摄像头的IP地址

举报
AI浩 发表于 2024/01/13 22:19:36 2024/01/13
【摘要】 @[toc] 问题在房间里部署了很多海康摄像头,但是却不知道IP地址,如何才能获取到这些摄像头的IP地址呢? 解决方法海康提供了一个工具,将其下载后安装即可,下载地址:https://www.hikvision.com/cn/support/tools/hitools/clea8b3e4ea7da90a9/通过SADP软件搜索局域网内所在网段的在线设备。同时支持查看设备信息、激活设备、修改设...

@[toc]

问题

在房间里部署了很多海康摄像头,但是却不知道IP地址,如何才能获取到这些摄像头的IP地址呢?

解决方法

海康提供了一个工具,将其下载后安装即可,下载地址:

https://www.hikvision.com/cn/support/tools/hitools/clea8b3e4ea7da90a9/

在这里插入图片描述

通过SADP软件搜索局域网内所在网段的在线设备。同时支持查看设备信息、激活设备、修改设备的网络参数、重置设备密码等功能
在这里插入图片描述
在这里插入图片描述
还有更多的工具,链接:

https://www.hikvision.com/cn/support/tools/hitools/

在这里插入图片描述

@[toc]

图像分类网络

![在这里插入图片描述](https://img-blog.csdnimg.cn/353273a80b774f54bf47ab0691d5ade4.jpeg#pic_center =500x)

AlexNet

【第61篇】AlexNet:CNN开山之作

VGGNet

【第1篇】VGG

GooLeNet系列

【第2篇】GooLeNet

【第3篇】Inception V2

【第4篇】Inception V3

【第62篇】Inception-v4

ResNet

【第5篇】ResNet

DenseNet

【第10篇】DenseNet

Swin Transformer

【第16篇】Swin Transformer

【第49篇】Swin Transformer V2:扩展容量和分辨率

MAE

【第21篇】MAE(屏蔽自编码器是可扩展的视觉学习器)

CoAtNet

【第22篇】CoAtNet:将卷积和注意力结合到所有数据大小上

ConvNeXtV1、V2

【第25篇】力压Tramsformer,ConvNeXt成了CNN的希望

【第64篇】ConvNeXt V2论文翻译:ConvNeXt V2与MAE激情碰撞

MobileNet系列

【第26篇】MobileNets:用于移动视觉应用的高效卷积神经网络

【第27篇】MobileNetV2:倒置残差和线性瓶颈

【第28篇】搜索 MobileNetV3

MPViT

【第29篇】MPViT:用于密集预测的多路径视觉转换器

VIT

【第30篇】Vision Transformer

SWA

【第32篇】SWA:平均权重导致更广泛的最优和更好的泛化

EfficientNet系列

【第34篇】 EfficientNetV2:更快、更小、更强——论文翻译

MOBILEVIT

【第35篇】MOBILEVIT:轻量、通用和适用移动设备的Vision Transformer

EdgeViTs

【第37篇】EdgeViTs: 在移动设备上使用Vision Transformers 的轻量级 CNN

MixConv

【第38篇】MixConv:混合深度卷积核

RepLKNet

【第39篇】RepLKNet将内核扩展到 31x31:重新审视 CNN 中的大型内核设计

TransFG

【第40篇】TransFG:用于细粒度识别的 Transformer 架构

ConvMAE

【第41篇】ConvMAE:Masked Convolution 遇到 Masked Autoencoders

MicroNet

【第42篇】MicroNet:以极低的 FLOP 实现图像识别

RepVGG

【第46篇】RepVGG :让卷积再次伟大

MaxViT

【第48篇】MaxViT:多轴视觉转换器

MAFormer

【第53篇】MAFormer: 基于多尺度注意融合的变压器网络视觉识别

GhostNet系列

【第56篇】GhostNet:廉价操作得到更多的特征

【第57篇】RepGhost:一个通过重新参数化实现硬件高效的Ghost模块

DEiT系列

【第58篇】DEiT:通过注意力训练数据高效的图像transformer &蒸馏

MetaFormer

【第59篇】MetaFormer实际上是你所需要的视觉

RegNet

【第60篇】RegNet:设计网络设计空间

InternImage

【第73篇】InternImage:探索具有可变形卷积的大规模视觉基础模型

FasterNet

【第74篇】 FasterNet:CVPR2023年最新的网络,基于部分卷积PConv,性能远超MobileNet,MobileVit

注意力机制

【第23篇】NAM:基于标准化的注意力模块

物体检测

【第6篇】SSD论文翻译和代码汇总

【第7篇】CenterNet

【第8篇】M2Det

【第9篇】YOLOX

【第11篇】微软发布的Dynamic Head,创造COCO新记录:60.6AP

【第12篇】Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

【第13篇】CenterNet2论文解析,COCO成绩最高56.4mAP

【第14篇】UMOP

【第15篇】CBNetV2

【第19篇 】SE-SSD论文翻译

【第24篇】YOLOR:多任务的统一网络

【第31篇】探索普通视觉Transformer Backbones用于物体检测

【第36篇】CenterNet++ 用于对象检测

【第45篇】YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

行人属性识别

【第66篇】行人属性识别研究综述(一)

【第66篇】行人属性识别研究综述(二)

行人跟踪

【第47篇】BoT-SORT:强大的关联多行人跟踪

【第65篇】SMILEtrack:基于相似度学习的多目标跟踪

【第70篇】DeepSort:论文翻译

【第72篇】深度学习在视频多目标跟踪中的应用综述

OCR

【第20篇】像人类一样阅读:自主、双向和迭代语言 场景文本识别建模

【第44篇】DBNet:具有可微分二值化的实时场景文本检测

超分辨采样

【第33篇】SwinIR

弱光增强

RetinexNet

【第52篇】RetinexNet: Deep Retinex Decomposition for Low-Light Enhancement

【第50篇】迈向快速、灵活、稳健的微光图像增强

NLP

【第17篇】TextCNN

【第18篇】Bert论文翻译

多模态

【第43篇】CLIP:从自然语言监督中学习可迁移的视觉模型

知识蒸馏

【第54篇】知识蒸馏:Distilling the Knowledge in a Neural Network

剪枝

【第55篇】剪枝算法:通过网络瘦身学习高效卷积网络

【第71篇】DepGraph:适用任何结构的剪枝

智慧城市

【第51篇】用于交通预测的时空交互动态图卷积网络

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。