聊聊本地缓存神器:Caffeine
【摘要】 目录Caffeine基本介绍简单使用清除策略 GuavaCache和Caffeine差异Caffeine基本介绍Caffeine 是基于 JAVA 8 的高性能本地缓存库。并且在 spring5 (springboot 2.x) 后,spring 官方放弃了 Guava,而使用了性能更优秀的 Caffeine 作为默认缓存组件。Caffeine是在Guava Cache的基础上做一层封...
目录
Caffeine基本介绍
Caffeine 是基于 JAVA 8 的高性能本地缓存库。并且在 spring5 (springboot 2.x) 后,spring 官方放弃了 Guava,而使用了性能更优秀的 Caffeine 作为默认缓存组件。
Caffeine是在Guava Cache的基础上做一层封装,性能有明显提高,二者同属于内存级本地缓存。使用Caffeine后无需使用Guava Cache,从并发的角度来讲,Caffeine明显优于Guava,原因是使用了Java 8最新的StampedLock锁技术。
本地缓存与分布式缓存对应,缓存进程和应用进程同属于一个JVM,数据的读、写在一个进程内完成。本地缓存没有网络开销,访问速度很快。
Caffeine提供灵活的结构来创建缓存,并且有以下特性:
- 自动加载条目到缓存中,可选异步方式
- 可以基于大小剔除
- 可以设置过期时间,时间可以从上次访问或上次写入开始计算
- 异步刷新
- keys自动包装在弱引用中
- values自动包装在弱引用或软引用中
- 条目剔除通知
- 缓存访问统计
简单使用
导入pom依赖
入门案例
配置案例
参数说明:
- initialCapacity 初始的缓存空间大小
- maximumSize 缓存的最大条数
- maximumWeight 缓存的最大权重
- expireAfterAccess 最后一次写入或访问后,经过固定时间过期
- expireAfterWrite 最后一次写入后,经过固定时间过期
- refreshAfterWrite 写入后,经过固定时间过期,下次访问返回旧值并触发刷新
- weakKeys 打开 key 的弱引用
- weakValues 打开 value 的弱引用
- softValues 打开 value 的软引用
- recordStats 缓存使用统计
- expireAfterWrite 和 expireAfterAccess 同时存在时,以 expireAfterWrite 为准。
- weakValues 和 softValues 不可以同时使用。
- maximumSize 和 maximumWeight 不可以同时使用。
清除策略
Caffeine提供了三种缓存驱逐策略:
基于容量:设置缓存的数量上限
基于时间:设置缓存的有效时间
基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。
Caffeine.weakKeys() 使用弱引用存储key。如果没有强引用这个key,则GC时允许回收该条目
Caffeine.weakValues() 使用弱引用存储value。如果没有强引用这个value,则GC时允许回收该条目
Caffeine.softValues() 使用软引用存储value, 如果没有强引用这个value,则GC内存不足时允许回收该条目
引用类型 | 被垃圾回收时间 | 用途 | 生存时间 |
---|---|---|---|
强引用 | 从来不会 | 对象的一般状态 | JVM停止运行时终止 |
软引用 | 在内存不足时 | 对象缓存 | 内存不足时终止 |
弱引用 | 在垃圾回收时 | 对象缓存 | gc运行后终止 |
虚引用 | Unknown | Unknown | Unknown |
GuavaCache和Caffeine差异
- 剔除算法方面,GuavaCache采用的是「LRU」算法,而Caffeine采用的是「Window TinyLFU」算法,这是两者之间最大,也是根本的区别。
- 立即失效方面,Guava会把立即失效 (例如:expireAfterAccess(0) and expireAfterWrite(0)) 转成设置最大Size为0。这就会导致剔除提醒的原因是SIZE而不是EXPIRED。Caffiene能正确识别这种剔除原因。
- 取代提醒方面,Guava只要数据被替换,不管什么原因,都会触发剔除监听器。而Caffiene在取代值和先前值的引用完全一样时不会触发监听器。
- 异步化方方面,Caffiene的很多工作都是交给线程池去做的(默认:ForkJoinPool.commonPool()),例如:剔除监听器,刷新机制,维护工作等。
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)