平均互信息与条件熵

举报
timerring 发表于 2023/04/07 09:59:37 2023/04/07
【摘要】 本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:https://github.com/timerring/information-theory 】或者公众号【AIShareLab】回复 信息论 获取。 平均互信息平均互信息定义I(X;Y)=E[I(x,y)]=H(X)−H(X∣Y)I(X ; Y)=E[I(x, y)]=...

本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:https://github.com/timerring/information-theory 】或者公众号【AIShareLab】回复 信息论 获取。

平均互信息

平均互信息定义

I ( X ; Y ) = E [ I ( x , y ) ] = H ( X ) H ( X Y ) I(X ; Y)=E[I(x, y)]=H(X)-H(X \mid Y)

  1. Y 末知, X \mathrm{X} 的不确定度为 H ( X ) \mathrm{H}(\mathrm{X})
  2. Y 已知, X \mathrm{X} 的不确定度变为 H ( X Y ) \mathbf{H}(\mathbf{X} \mid \mathbf{Y})

互信息 = 先验不确定性 - 后验不确定性 = 不确定性减少的量

通信系统中若发端的符号为 X 收端的符号为 Y。如果是 一一对应信道, 接收到 Y 后对 X 的不确定性将完全消除: H(X|Y) = 0,一般情况 H(X|Y) < H(X), 即了解 Y 后对 X 的不确定度将减少。

通过信道传输消除了一些不确定性, 获得了一定的信息, 故 0 I ( X ; Y ) H ( X ) 0 \leq I(X ; Y) \leq H(X)

I ( X ; Y ) = i j p ( x i y j ) log p ( x i y j ) p ( x i ) I(X ; Y)=\sum_{i} \sum_{j} p(x_{i} y_{j}) \log \frac{p(x_{i} \mid y_{j})}{p(x_{i})}

= i j p ( x i y j ) log p ( x i y j ) p ( x i ) p ( y j ) = i j p ( x i y j ) log p ( y j x i ) p ( y j ) =\sum_{i} \sum_{j} p(x_{i} y_{j}) \log \frac{p(x_{i} y_{j})}{p(x_{i}) p(y_{j})}=\sum_{i} \sum_{j} p(x_{i} y_{j}) \log \frac{p(y_{j} \mid x_{i})}{p(y_{j})}

= I ( Y ; X ) =I(Y ; X)

由上,平均互信息具有互易性:

I ( X ; Y ) = I ( Y ; X ) I(X ; Y)=I(Y ; X)

例 假设一条电线上串联了 8 个灯泡 $ x_{1}, x_{2}, \ldots x_{8}$ 如图, 这 8 个灯泡损坏的概率相等 p ( x i ) = 1 / 8 p(x_{\mathbf{i}})=1 / 8 , 现 假设只有一个灯泡已损坏, 致使串联灯泡都不能点亮。

未测量前, 8 个灯泡都有可能损坏, 它们损坏的先验概率: p ( x i ) = 1 / 8 p(x_{\mathrm{i}})=1 / 8 , 这时存在的不确定性

I ( x i ) = log 1 p ( x i ) = log 2 8 = 3  bit  \mathrm{I}(\mathrm{x}_{i})=\log \frac{1}{\mathrm{p}(\mathrm{x}_{i})}=\log _{2} 8=3 \text { bit }

测量 1 次后, 可知 4 个灯泡是好的, 另 4 个灯泡中有一个是坏的,这时后验概率 p ( x i y ) = 1 / 4 p(x_{\mathrm{i}} \mid y)=1 / 4 ,尚存在的不确定性:

I ( x i y ) = log 1 p ( x i y ) = log 2 4 = 2  bit  \mathrm{I}(\mathrm{x}_{i} \mid \mathrm{y})=\log \frac{1}{\mathrm{p}(\mathrm{x}_{i} \mid \mathrm{y})}=\log _{2} 4=2 \text { bit }

所获得的信息量就是测量前后不确定性减少的量, 测量1次获得的信息量:

I ( x i ; y j ) = I ( x i ) I ( x i y ) = 3 2 = 1 b i t I(x_{i} ; y_{j})=I(x_{i})-I(x_{i} \mid y)=3-2=1 b i t

平均互信息与各类熵的关系

I ( X ; Y ) = H ( X ) H ( X Y ) = H ( Y ) H ( Y X ) = H ( X ) + H ( Y ) H ( X Y ) H ( X Y ) = H ( X ) + H ( Y X ) = H ( Y ) + H ( X Y ) H ( X Y ) H ( X ) + H ( Y ) \begin{array}{c} I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X) \\ =H(X)+H(Y)-H(X Y) \\ H(X Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y) \\ H(X Y) \leq H(X)+H(Y) \end{array}

熵只是平均不确定性的描述,不确定性的消除两熵之差才等于接收端所获得的信息量;

获得的信息量不应该和不确定性混为一谈。

I(X;Y)表示X和Y之间的密切程度,越大,越密切。

下表有12条训练数据,记录了女性的择偶标准,每条数据包含了4个特征。这4个特征对结果的体现程度是不一样的。如何度量这种不同? 用平均互信息

4 个特征和结果的概率分布分别为

[ X 1 P ] = [  帅   不帅  2 / 3 1 / 3 ] [ X 2 P ] = [  好   不好   非常好  1 / 2 1 / 3 1 / 6 ] [ X 3 P ] = [  矮   高   中  7 / 12 1 / 4 1 / 6 ] [ X 4 P ] = [  上进   不上进  2 / 3 1 / 3 ] [ Y P ] = [  嫁   不嫁  1 / 2 1 / 2 ] \begin{array}{c} {\left[\begin{array}{l} X_{1} \\ P \end{array}\right]=\left[\begin{array}{ccc} \text { 帅 } & \text { 不帅 } \\ 2 / 3 & 1 / 3 \end{array}\right]\left[\begin{array}{c} X_{2} \\ P \end{array}\right]=\left[\begin{array}{ccc} \text { 好 } & \text { 不好 } & \text { 非常好 } \\ 1 / 2 & 1 / 3 & 1 / 6 \end{array}\right]} \\ {\left[\begin{array}{c} X_{3} \\ P \end{array}\right]=\left[\begin{array}{ccc} \text { 矮 } & \text { 高 } & \text { 中 } \\ 7 / 12 & 1 / 4 & 1 / 6 \end{array}\right] \quad\left[\begin{array}{c} X_{4} \\ P \end{array}\right]=\left[\begin{array}{ll} \text { 上进 } & \text { 不上进 } \\ 2 / 3 & 1 / 3 \end{array}\right]} \\ {\left[\begin{array}{l} Y \\ P \end{array}\right]=\left[\begin{array}{cc} \text { 嫁 } & \text { 不嫁 } \\ 1 / 2 & 1 / 2 \end{array}\right]} \end{array}

特征和结果之间的条件概率为 :

P ( Y X 2 ) = [ 1 / 2 1 / 2 1 / 4 3 / 4 1 0 ] P ( Y X 3 ) = [ 1 / 7 6 / 7 1 0 1 0 ] P ( Y X 4 ) = [ 5 / 8 3 / 8 1 / 4 3 / 4 ] \begin{array}{l} P\left(Y \mid X_{2}\right)=\left[\begin{array}{cc} 1 / 2 & 1 / 2 \\ 1 / 4 & 3 / 4 \\ 1 & 0 \end{array}\right] \quad P\left(Y \mid X_{3}\right)=\left[\begin{array}{cc} 1 / 7 & 6 / 7 \\ 1 & 0 \\ 1 & 0 \end{array}\right] \\ P\left(Y \mid X_{4}\right)=\left[\begin{array}{ll} 5 / 8 & 3 / 8 \\ 1 / 4 & 3 / 4 \end{array}\right] \\ \end{array}

从而联合概率为 :

P ( X 1 , Y ) = [ 1 / 4 5 / 12 1 / 4 1 / 12 ] P ( X 2 , Y ) = [ 1 / 4 1 / 4 1 / 12 1 / 4 1 / 6 0 ] P ( X 3 , Y ) = [ 1 / 12 1 / 2 1 / 4 0 1 / 6 0 ] P ( X 4 , Y ) = [ 5 / 12 1 / 4 1 / 12 1 / 4 ] \begin{array}{l} P\left(X_{1}, Y\right)=\left[\begin{array}{ll} 1 / 4 & 5 / 12 \\ 1 / 4 & 1 / 12 \end{array}\right] P\left(X_{2}, Y\right)=\left[\begin{array}{cc} 1 / 4 & 1 / 4 \\ 1 / 12 & 1 / 4 \\ 1 / 6 & 0 \end{array}\right] \\ P\left(X_{3}, Y\right)=\left[\begin{array}{cc} 1 / 12 & 1 / 2 \\ 1 / 4 & 0 \\ 1 / 6 & 0 \end{array}\right] P\left(X_{4}, Y\right)=\left[\begin{array}{ll} 5 / 12 & 1 / 4 \\ 1 / 12 & 1 / 4 \end{array}\right] \end{array}

得条件熵: H ( Y X 1 ) = 0.9067 , H ( Y X 2 ) = 0.7704 , H ( Y X 3 ) = 0.3451 , H ( Y X 4 ) = 0.9067 H(Y \mid X_{1})=0.9067, H(Y \mid X_{2})=0.7704 , H(Y \mid X_{3})=0.3451, H(Y \mid X_{4})=0.9067

平均互信息为: I ( X 1 ; Y ) = 0.0933 , I ( X 2 ; Y ) = 0.2296 , I ( X 3 ; Y ) = 0.6549 , I ( X 4 ; Y ) = 0.0933 I(X_{1} ; Y)=0.0933, I(X_{2} ; Y)=0.2296 , I(X_{3} ; Y)=0.6549, I(X_{4} ; Y)=0.0933 .

结论:身高是最主要特征, 其次是性格。只保留这两项即可。

维拉图

I ( X ; Y ) = H ( X ) H ( X Y ) = H ( Y ) H ( Y X ) = H ( X ) + H ( Y ) H ( X Y ) H ( X Y ) = H ( X ) + H ( Y X ) = H ( Y ) + H ( X Y ) H ( X Y ) H ( X ) + H ( Y ) H ( X ) H ( X Y ) H ( Y ) H ( Y X ) \begin{array}{l} I(X ; Y)=H(X)-H(X \mid Y) \\ =H(Y)-H(Y \mid X) \\ =H(X)+H(Y)-H(X Y) \\ H(X Y)=H(X)+H(Y \mid X) \\ =H(Y)+H(X \mid Y) \\ H(X Y) \leq H(X)+H(Y) \\ H(X) \geq H(X \mid Y) \\ H(Y) \geq H(Y \mid X) \\ \end{array}

若信道是无噪一一对应信道,信道传递概率:

p ( y x ) = { 0 y f ( x ) 1 y = f ( x ) p ( x y ) = p ( x y ) p ( y ) = p ( x ) p ( y x ) p ( x ) p ( y x ) = { 0 y f ( x ) 1 y = f ( x ) \begin{array}{c} p(y \mid x)=\left\{\begin{array}{ll} 0 & y \neq f(x) \\ 1 & y=f(x) \end{array}\right. \\ p(x \mid y)=\frac{p(x y)}{p(y)}=\frac{p(x) p(y \mid x)}{\sum p(x) p(y \mid x)}=\left\{\begin{array}{ll} 0 & y \neq f(x) \\ 1 & y=f(x) \end{array}\right. \end{array}

计算得:

H ( X Y ) = 0 ; H ( Y X ) = 0 H(X \mid Y)=0 ; H(Y \mid X)=0

I ( X ; Y ) = H ( X ) = H ( Y ) I(X ; Y)=H(X)=H(Y)

若信道输入端 X \mathbf{X} 与输出端 Y Y 完全统计独立

p ( y x ) = p ( y ) p ( x y ) = p ( x ) H ( X Y ) = H ( X ) ; H ( Y X ) = H ( Y ) \begin{array}{cc} p(y \mid x)=p(y) & p(x \mid y)=p(x) \\ H(X \mid Y)=H(X) ; & H(Y \mid X)=H(Y) \end{array}

则: I ( X ; Y ) = 0 I(X ; Y)=0

条件熵

H ( X Y ) H(X|Y) : 信道疑义度,损失熵

  • 信源符号通过有噪信道传输后所引起的信息量的损失。

信源X的熵等于接收到的信息量加上损失掉的信息量。

H ( Y X ) H(Y|X) : 噪声熵,散布熵

  • 它反映了信道中噪声源的不确定性。

输出端信源Y的熵 H ( Y ) H(Y) 等于接收到关于X的信息量 I ( X ; Y ) I(X;Y) 加上 H ( Y X ) H(Y|X) ,这完全是由于信道中噪声引起的。

平均互信息的性质

非负性: I ( X ; Y ) 0 I(X ; Y) \geq 0

互易性: I ( X ; Y ) = I ( Y ; X ) I(X ; Y)=I(Y ; X)

凸函数性:

  • I(X ; Y) 为概率分布 p(x) 的上凸函数
  • 对于固定的概率分布 p(x), I(X ; Y) 为条件概率 p ( y x ) p(y \mid x) 的 下凸函数

极值性: I ( X ; Y ) H ( X ) ; I ( X ; Y ) H ( Y ) I(X ; Y) \leq H(X) ; I(X ; Y) \leq H(Y)

若信道是下图所示的无躁一一对应信道,则有

H ( X Y ) = 0 H ( Y X ) = 0 I ( X ; Y ) = H ( X ) I ( X ; Y ) = H ( Y ) \begin{array}{l} H(X \mid Y)=0 \\ H(Y \mid X)=0 \\ I(X ; Y)=H(X) \\ I(X ; Y)=H(Y) \end{array}

参考文献:

  1. Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  2. Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  3. 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
  4. 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.
【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。