2亿条数据需要缓存,请问如何设计这个存储案例

举报
yd_249383650 发表于 2023/03/23 11:24:19 2023/03/23
【摘要】 ​ 1~2亿条数据需要缓存,请问如何设计这个存储案例单机单台100%不可能,肯定是分布式存储用redis如何落地?上述问题阿里P6~P7工程案例和场景设计类必考题目, 一般业界有3种解决方案哈希取余分区​编辑2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:hash(key) % N个机器台数,计算出哈希值,用来决定数据映射到...

 1~2亿条数据需要缓存,请问如何设计这个存储案例

单机单台100%不可能,肯定是分布式存储

用redis如何落地?

上述问题阿里P6~P7工程案例和场景设计类必考题目, 一般业界有3种解决方案

哈希取余分区

编辑

2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:hash(key) % N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。

优点:

  简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。

缺点 

原来规划好的节点,进行扩容或者缩容就比较麻烦了额,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:Hash(key)/3会变成Hash(key) /?。此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。

某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。

一致性哈希算法分区 

是什么

一致性Hash算法背景,一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数不OK了。

能干嘛 

提出一致性Hash解决方案。 目的是当服务器个数发生变动时, 尽量减少影响客户端到服务器的映射关系

算法构建一致性哈希环

一致性哈希环

致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。

  它也是按照使用取模的方法,前面笔记介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对2^32取模,简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希环如下图:整个空间按顺时针方向组织,圆环的正上方的点代表00点右侧的第一个点代表1,以此类推,234……直到2^32-1,也就是说0点左侧的第一个点代表2^32-1 02^32-1在零点中方向重合,我们把这个由2^32个点组成的圆环称为Hash环。

编辑

服务器IP节点映射

节点映射

   将集群中各个IP节点映射到环上的某一个位置。

 将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeABCD,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:  

 编辑

key落到服务器的落键规则 

当我们需要存储一个kv键值对时,首先计算keyhash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。

如我们有Object AObject BObject CObject D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

编辑

优点 

 一致性哈希算法的容错性

容错性

假设Node C宕机,可以看到此时对象ABD不会受到影响,只有C对象被重定位到Node D。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。简单说,就是C挂了,受到影响的只是BC之间的数据,并且这些数据会转移到D进行存储。

编辑

一致性哈希算法的扩展性 

扩展性

数据量增加了,需要增加一台节点NodeXX的位置在AB之间,那收到影响的也就是AX之间的数据,重新把AX的数据录入到X上即可,不会导致hash取余全部数据重新洗牌。

编辑

​​​​​​​缺点

一致性哈希算法的数据倾斜问题

Hash环的数据倾斜问题

一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,例如系统中只有两台服务器:

编辑


​​​​​​​小总结

为了在节点数目发生改变时尽可能少的迁移数据将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。而当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点  

优点

加入和删除节点只影响哈希环中顺时针方向的相邻的节点,对其他节点无影响。


缺点 

数据的分布和节点的位置有关,因为这些节点不是均匀的分布在哈希环上的,所以数据在进行存储时达不到均匀分布的效果。

​​​​​​​哈希槽分区

为什么出现

编辑

哈希槽实质就是一个数组,数组[0,2^14 -1]形成hash slot空间。

能干什么

解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里放的是数据。

编辑

多少个hash 

一个集群只能有16384个槽,编号0-163830-2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。可以指定哪些编号的槽分配给哪个主节点。集群会记录节点和槽的对应关系。解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取余,余数是几key就落入对应的槽里。slot = CRC16(key) % 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。

哈希槽计算

Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在 Redis 集群中放置一个 key-value时,redis 先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。如下代码,keyA BNode2 keyC落在Node3

编辑

编辑

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。