MapReduce关于类型转换报错记录
【摘要】 MapReduce关于类型转换报错记录
MapReduce关于类型转换报错记录
@[toc]
0. 写在前面
- 实验环境:Ubuntu Kylin16.04
- Hadoop版本:2.7.2
- IDE:Eclipse3.8
1. 程序代码
Mapper端
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] strs = value.toString().split(" ");
for (String str : strs) {
context.write(new Text(str), new IntWritable(1));
}
}
}
Reducer端
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public static class WordCountReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
System.out.println("<" + key + "," + val + ">");
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
Driver端
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class TxtCntDemo {
public static void main(String[] args) throws Exception {
args = new String[] { "/input", "/output"};
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);/
job.setJarByClass(TxtCntDemo.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(WordCountMap.class);
job.setReducerClass(WordCountReduce.class);
job.setPartitionerClass(MyPartitioner.class);
job.setNumReduceTasks(4);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
「错误描述」
java.lang.Exception: java.lang.ClassCastException: org.apache.hadoop.io.Text cannot be cast to org.apache.hadoop.io.IntWritable
java.lang.Exception: java.lang.ClassCastException: org.apache.hadoop.io.LongWritable cannot be cast to org.apache.hadoop.io.IntWritable
mapper、reducer、driver分开成3个文件,报Text不可转换成IntWritable,还有LongWritable不能转换成IntWritable的错误
关于第二个错误:Mapper端执行时,key的默认输入是LongWritable类型,把LongWritable类型强行转换成Text类型自然就Error了。
java.lang.Exception: java.lang.ClassCastException: org.apache.hadoop.io.Text cannot be cast to org.apache.hadoop.io.IntWritable
at org.apache.hadoop.mapred.LocalJobRunner$Job.runTasks(LocalJobRunner.java:462)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:522)
Caused by: java.lang.ClassCastException: org.apache.hadoop.io.Text cannot be cast to org.apache.hadoop.io.IntWritable
at org.apache.hadoop.mapred.MapTask$NewOutputCollector.write(MapTask.java:715)
at org.apache.hadoop.mapreduce.task.TaskInputOutputContextImpl.write(TaskInputOutputContextImpl.java:89)
at org.apache.hadoop.mapreduce.lib.map.WrappedMapper$Context.write(WrappedMapper.java:112)
at cn.mr.WordCountMapper.map(WordCountMapper.java:15)
at cn.mr.WordCountMapper.map(WordCountMapper.java:1)
at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:146)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:787)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:243)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
但是同样的代码mapper、reducer、driver直接放在一个文件下就顺利执行MR得出结果
这个属实给我整不会了 😢 😢
2. 参考
记录一下
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)