CenterNet-Hourglass (物体检测/Pytorch)

举报
HWCloudAI 发表于 2022/12/01 11:12:32 2022/12/01
【摘要】 CenterNet-Hourglass (物体检测/Pytorch)目标检测常采用Anchor的方法来获取物体可能存在的位置,再对该位置进行分类,这样的做法耗时、低效,同时需要后处理(比如NMS)。CenterNet将目标看成一个点,即目标bounding box的中心点,整个问题转变成了关键点估计问题,其他目标属性,比如尺寸、3D位置、方向和姿态等都以估计的中心点为基准进行参数回归。本案...

CenterNet-Hourglass (物体检测/Pytorch)

目标检测常采用Anchor的方法来获取物体可能存在的位置,再对该位置进行分类,这样的做法耗时、低效,同时需要后处理(比如NMS)。CenterNet将目标看成一个点,即目标bounding box的中心点,整个问题转变成了关键点估计问题,其他目标属性,比如尺寸、3D位置、方向和姿态等都以估计的中心点为基准进行参数回归。

本案例是CenterNet-Hourglass论文复现的体验案例,此模型是对Objects as Points 中提出的CenterNet进行结果复现(原论文Table 2 最后一行)。本模型是以Hourglass网络架构作为backbone,以ExtremNet 作为预训练模型,在COCO数据集上进行50epochs的训练后得到的。本项目是基于原论文的官方代码进行针对ModelArts平台的修改来实现ModelArts上的训练与部署。
具体算法介绍:https://marketplace.huaweicloud.com/markets/aihub/modelhub/detail/?id=380f95a6-1552-4128-ac96-36066258853f

注意事项:

1.本案例使用框架:PyTorch1.4.0

2.本案例使用硬件:GPU: 1*NVIDIA-V100NV32(32GB) | CPU: 8 核 64GB

3.运行代码方法: 点击本页面顶部菜单栏的三角形运行按钮或按Ctrl+Enter键 运行每个方块中的代码

4.JupyterLab的详细用法: 请参考《ModelAtrs JupyterLab使用指导》

5.碰到问题的解决办法**:** 请参考《ModelAtrs JupyterLab常见问题解决办法》

1.下载数据和代码

运行下面代码,进行数据和代码的下载和解压

本案例使用COCO数据集。

import os
#数据代码下载
!wget https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/algorithm/CenterNet.zip
# 解压缩
os.system('unzip  CenterNet.zip -d ./')
--2021-06-25 17:50:11--  https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/algorithm/CenterNet.zip

Resolving proxy-notebook.modelarts.com (proxy-notebook.modelarts.com)... 192.168.6.62

Connecting to proxy-notebook.modelarts.com (proxy-notebook.modelarts.com)|192.168.6.62|:8083... connected.

Proxy request sent, awaiting response... 200 OK

Length: 1529663572 (1.4G) [application/zip]

Saving to: ‘CenterNet.zip’



CenterNet.zip       100%[===================>]   1.42G   279MB/s    in 5.6s    



2021-06-25 17:50:16 (261 MB/s) - ‘CenterNet.zip’ saved [1529663572/1529663572]







0

2.训练

2.1依赖库加载和安装

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

root_path = './CenterNet/'
os.chdir(root_path)
os.system('pip install pycocotools')

import _init_paths
import torch
import torch.utils.data
from opts import opts
from models.model import create_model, load_model, save_model
from models.data_parallel import DataParallel
from logger import Logger
from datasets.dataset_factory import get_dataset
from trains.train_factory import train_factory
from evaluation import test, prefetch_test, image_infer

USE_MODELARTS = True
INFO:root:Using MoXing-v2.0.0.rc0-19e4d3ab

INFO:root:Using OBS-Python-SDK-3.20.9.1


NMS not imported! If you need it, do 

 cd $CenterNet_ROOT/src/lib/external 

 make

2.2训练函数

def main(opt):
  torch.manual_seed(opt.seed)
  torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test
  Dataset = get_dataset(opt.dataset, opt.task)
  opt = opts().update_dataset_info_and_set_heads(opt, Dataset)

  logger = Logger(opt)

  os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
  opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu')    
  
  print('Creating model...')
  model = create_model(opt.arch, opt.heads, opt.head_conv)
  optimizer = torch.optim.Adam(model.parameters(), opt.lr)
  start_epoch = 0
  if opt.load_model != '':
    model, optimizer, start_epoch = load_model(
      model, opt.load_model, optimizer, opt.resume, opt.lr, opt.lr_step)

  Trainer = train_factory[opt.task]
  trainer = Trainer(opt, model, optimizer)
  trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device)

  print('Setting up data...')

  train_loader = torch.utils.data.DataLoader(
      Dataset(opt, 'train'), 
      batch_size=opt.batch_size, 
      shuffle=True,
      num_workers=opt.num_workers,
      pin_memory=True,
      drop_last=True
  )

  print('Starting training...')
  best = 1e10
  for epoch in range(start_epoch + 1, opt.num_epochs + 1):
    mark = epoch if opt.save_all else 'last'
    log_dict_train, _ = trainer.train(epoch, train_loader)
    logger.write('epoch: {} |'.format(epoch))
    for k, v in log_dict_train.items():
      logger.scalar_summary('train_{}'.format(k), v, epoch)
      logger.write('{} {:8f} | '.format(k, v))

    save_model(os.path.join(opt.save_dir, 'model_last.pth'), 
                 epoch, model)
    logger.write('\n')
    if epoch in opt.lr_step:
      save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)), 
                 epoch, model, optimizer)
      lr = opt.lr * (0.1 ** (opt.lr_step.index(epoch) + 1))
      print('Drop LR to', lr)
      for param_group in optimizer.param_groups:
          param_group['lr'] = lr
  logger.close()

2.3开始训练

训练需要一点时间,请耐心等待

if __name__ == '__main__':
  opt = opts().parse()

  if USE_MODELARTS:
    pwd = os.getcwd()
    print('Copying dataset to work space...')
    print('Listing directory: ')
    print(os.listdir())

    if not os.path.exists(opt.save_dir):
      os.makedirs(opt.save_dir)
  main(opt)

  if USE_MODELARTS:
    print("Processing model checkpoints & service config for deployment...")
    if not opt.eval:
      infer_dir = os.path.join(opt.save_dir, 'model')
      os.makedirs(infer_dir)
      os.system(f'mv ./trained_model/* {infer_dir}')
      pretrained_pth = os.path.join(infer_dir, '*.pth')
      ckpt_dir = os.path.join(opt.save_dir, 'checkpoints')
      os.makedirs(ckpt_dir)
      os.system(f'mv {pretrained_pth} {ckpt_dir}')
      pth_files = os.path.join(opt.save_dir, '*.pth')
      infer_pth = os.path.join(ckpt_dir, f'{opt.model_deploy}.pth')
      os.system(f'mv {pth_files} {ckpt_dir}')
      os.system(f'mv {infer_pth} {infer_dir}')
    print(os.listdir(opt.save_dir))
    print("ModelArts post-training work is done!")
Fix size testing.

training chunk_sizes: [8]

The output will be saved to  ./output/exp/ctdet/default

Copying dataset to work space...

Listing directory: 

['pre-trained_weights', '.ipynb_checkpoints', 'coco_eval.py', 'train.py', 'coco', 'output', 'training_logs', 'trained_model', '_init_paths.py', '__pycache__', 'coco_classes.py', 'lib', 'evaluation.py']

heads {'hm': 80, 'wh': 2, 'reg': 2}

Creating model...

loaded ./trained_model/epoch_50_mAP_42.7.pth, epoch 50

Setting up data...

==> initializing coco 2017 train data.

loading annotations into memory...

Done (t=0.54s)

creating index...

index created!

Loaded train 5000 samples

Starting training...


/home/ma-user/anaconda3/envs/Pytorch-1.4.0/lib/python3.6/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.

  warnings.warn(warning.format(ret))


ctdet/default| train: [1][0/625] |loss 1.7568 |hm_loss 1.3771 |wh_loss 1.9394 |off_loss 0.1857 |Data 0.384s (0.384s) |Net 5.019s (5.019s)

ctdet/default| train: [1][200/625] |loss 1.9275 |hm_loss 1.4429 |wh_loss 2.7269 |off_loss 0.2119 |Data 0.001s (0.003s) |Net 0.759s (0.779s)

ctdet/default| train: [1][400/625] |loss 1.9290 |hm_loss 1.4430 |wh_loss 2.7423 |off_loss 0.2118 |Data 0.001s (0.002s) |Net 0.760s (0.770s)

ctdet/default| train: [1][600/625] |loss 1.9276 |hm_loss 1.4397 |wh_loss 2.7623 |off_loss 0.2117 |Data 0.001s (0.002s) |Net 0.765s (0.767s)

Processing model checkpoints & service config for deployment...

['model', 'logs_2021-06-25-17-51', 'opt.txt', 'checkpoints']

ModelArts post-training work is done!

3.模型测试

3.1推理函数

# -*- coding: utf-8 -*-
# TODO 添加模型运行需要导入的模块
import os
import torch
import numpy as np
from PIL import Image
from io import BytesIO
from collections import OrderedDict
import cv2
import sys
sys.path.insert(0, './lib')

from opts import opts
from coco_classes import coco_class_map
from detectors.detector_factory import detector_factory

class ModelClass():
    def __init__(self, model_path):

        self.model_path = model_path  # 本行代码必须保留,且无需修改

        self.opt = opts().parse()
        self.opt.num_classes = 80
        self.opt.resume = True
        self.opt.keep_res = True
        self.opt.fix_res = False
        self.opt.heads = {'hm': 80, 'wh': 2, 'reg': 2}
        self.opt.load_model = model_path
        self.opt.mean = np.array([0.40789654, 0.44719302, 0.47026115],
                   dtype=np.float32).reshape(1, 1, 3)
        self.opt.std  = np.array([0.28863828, 0.27408164, 0.27809835],
                   dtype=np.float32).reshape(1, 1, 3)

        self.opt.batch_infer = False
        # configurable varibales:
        if 'BATCH_INFER' in os.environ:
            print('Batch inference mode!')
            self.opt.batch_infer = True
        if 'FLIP_TEST' in os.environ:
            print('Flip test!')
            self.opt.flip_test = True
        if 'MULTI_SCALE' in os.environ:
            print('Multi scale!')
            self.opt.test_scales = [0.5,0.75,1,1.25,1.5]

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        if not torch.cuda.is_available():
            self.opt.gpus = [-1]
        
        self.class_map = coco_class_map()

        torch.set_grad_enabled(False)
        Detector = detector_factory[self.opt.task]
        self.detector = Detector(self.opt)

        print('load model success')



    def predict(self, file_name):
        image = Image.open(file_name).convert('RGB')
        img = np.array(image)
        img = img[:, :, ::-1]

        results = self.detector.run(img)['results']
        image = cv2.cvtColor(np.asarray(image),cv2.COLOR_RGB2BGR)
        if not self.opt.batch_infer:
            for c_id, dets in results.items():
                for det in dets:
                    if det[4] > self.opt.vis_thresh:
                    
                        scores = str(round(float(det[4]), 4))
                        classes = self.class_map[c_id]
                        image = cv2.rectangle(image,(int(det[0]),int(det[1])),(int(det[2]),int(det[3])),(0,255,0),2)
                        image = cv2.putText(image,classes+':'+scores,(int(det[0]),int(det[1])),cv2.FONT_HERSHEY_SIMPLEX,0.7,(0,0,255),2)

        else:
            for c_id, dets in results.items():
                for det in dets:
                    scores = str(round(float(det[4]), 4))
                    classes = self.class_map[c_id]
                    image = cv2.rectangle(image,(int(det[0]),int(det[1])),(int(det[2]),int(det[3])),(0,255,0),2)
                    image = cv2.putText(image,classes+':'+scores,(int(det[0]),int(det[1])),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,255),2)
        
        return image

3.2开始推理

可以自行修改预测的图像路径

if __name__ == '__main__':
    import matplotlib.pyplot as plt

    img_path = './coco/train/000000021903.jpg'  
    model_path = './output/exp/ctdet/default/model/model_last.pth'  #模型的保存路径,你可以自己找一下

    # 以下代码无需修改
    my_model = ModelClass(model_path)
    result = my_model.predict(img_path)
    result = Image.fromarray(cv2.cvtColor(result,cv2.COLOR_BGR2RGB))
    plt.figure(figsize=(10,10)) #设置窗口大小
    plt.imshow(result)
    plt.show()
Fix size testing.

training chunk_sizes: [8]

The output will be saved to  ./output/exp/ctdet/default

Creating model...

loaded ./output/exp/ctdet/default/model/model_last.pth, epoch 1

load model success

image.png


【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。