pytorch 学习率衰减机制学习笔记

举报
风吹稻花香 发表于 2022/09/25 02:58:26 2022/09/25
【摘要】 目录 pytorch实现学习率衰减 手动修改optimizer中的lr使用lr_scheduler LambdaLR——lambda函数衰减StepLR——阶梯式衰减MultiStepLR——多阶梯式衰减ExponentialLR——指数连续衰减 CosineAnnealingLR——余弦退火衰减Reduce...

目录

1|1手动修改optimizer中的lr

使用for循环来手动人工进行learning rate的衰减


model = net() LR = 0.01 optimizer = Adam(model.parameters(),lr = LR) lr_list = [] for epoch in range(100): if epoch % 5 == 0: for p in optimizer.param_groups: p['lr'] *= 0.9#注意这里 lr_list.append(optimizer.state_dict()['param_groups'][0]['lr']) plt.plot(range(100),lr_list,color = 'r')

1|2使用lr_scheduler

LambdaLR——lambda函数衰减


torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

lr_lambda 会接收到一个int参数:epoch,然后根据epoch计算出对应的lr。如果设置多个lambda函数的话,会分别作用于Optimizer中的不同的params_group


import numpy as np lr_list = [] model = net() LR = 0.01 optimizer = Adam(model.parameters(),lr = LR) lambda1 = lambda epoch:np.sin(epoch) / epoch scheduler = lr_scheduler.LambdaLR(optimizer,lr_lambda = lambda1) for epoch in range(100): scheduler.step() lr_list.append(optimizer.state_dict()['param_groups'][0]['lr']) plt.plot(range(100),lr_list,color = 'r')

StepLR——阶梯式衰减


torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

每个一定的epoch,lr会自动乘以gamma进行阶梯式衰减

⭐⭐⭐注意:pytorch1.1.0之后scheduler.step()要放在optimizer.step()之后!!!


lr_list = [] model = net() LR = 0.01 optimizer = Adam(model.parameters(),lr = LR) scheduler = lr_scheduler.StepLR(optimizer,step_size=5,gamma = 0.8) for epoch in range(100): scheduler.step() lr_list.append(optimizer.state_dict()['param_groups'][0]['lr']) plt.plot(range(100),lr_list,color = 'r')

 

MultiStepLR——多阶梯式衰减


torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

三段式lr,epoch进入milestones范围内即乘以gamma,离开milestones范围之后再乘以gamma。这种衰减方式也是在学术论文中最常见的方式,一般手动调整也会采用这种方法。


lr_list = [] model = net() LR = 0.01 optimizer = Adam(model.parameters(),lr = LR) scheduler = lr_scheduler.MultiStepLR(optimizer,milestones=[20,80],gamma = 0.9) for epoch in range(100): scheduler.step() lr_list.append(optimizer.state_dict()['param_groups'][0]['lr']) plt.plot(range(100),lr_list,color = 'r')

1|3ExponentialLR——指数连续衰减


torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)

每个epoch中lr都乘以gamma


lr_list = [] model = net() LR = 0.01 optimizer = Adam(model.parameters(),lr = LR) scheduler = lr_scheduler.ExponentialLR(optimizer, gamma=0.9) for epoch in range(100): scheduler.step() lr_list.append(optimizer.state_dict()['param_groups'][0]['lr']) plt.plot(range(100),lr_list,color = 'r')

 

CosineAnnealingLR——余弦退火衰减


torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

T_max 对应1/2个cos周期所对应的epoch数值

eta_min 为最小的lr值,默认为0

ReduceLROnPlateau


torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

在发现loss不再降低或者acc不再提高之后,降低学习率。

各参数意义如下:

mode:'min'模式检测metric是否不再减小,'max'模式检测metric是否不再增大;

factor: 触发条件后lr*=factor;

patience:不再减小(或增大)的累计次数;

verbose:触发条件后print;

threshold:只关注超过阈值的显著变化;

threshold_mode:有rel和abs两种阈值计算模式,rel规则:max模式下如果超过best(1+threshold)为显著,min模式下如果低于best(1-threshold)为显著;abs规则:max模式下如果超过best+threshold为显著,min模式下如果低于best-threshold为显著;

cooldown:触发一次条件后,等待一定epoch再进行检测,避免lr下降过速;

min_lr:最小的允许lr;

eps:如果新旧lr之间的差异小与1e-8,则忽略此次更新。

文章来源: blog.csdn.net,作者:AI视觉网奇,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/jacke121/article/details/126869048

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。