deepstream 预处理结果保存(进入模型前的图片)
首先,你需要知道模块插件是gstnvinfer ,所以你需要在这个模块增加打印代码
模块路径:/opt/nvidia/deepstream/deepstream-6.0/sources/gst-plugins/gst-nvinfer/gstnvinfer.cpp
此方法是DGPU方式,如果需要jetson方式,按照上篇后处理图片保存修改即可
首先是保存图片的方法:
我的printf("all_bbox_generated called! colorformat =%d\n", surface->surfaceList[frameIndex].colorFormat);
打印的结果是: 27 所以我的是RGB模式。
//zwh start
static void save_transformed_plate_images(NvBufSurface * surface) {
for (uint frameIndex = 0; frameIndex < surface->numFilled;
frameIndex++) {
void *src_data = NULL;
src_data = (char *)malloc(surface->surfaceList[frameIndex].dataSize);
if (src_data == NULL) {
g_print("Error: failed to malloc src_data \n");
}
cudaMemcpy((void *)src_data,
(void *)surface->surfaceList[frameIndex].dataPtr,
surface->surfaceList[frameIndex].dataSize,
cudaMemcpyDeviceToHost);
gint frame_width = (gint)surface->surfaceList[frameIndex].width;
gint frame_height = (gint)surface->surfaceList[frameIndex].height;
size_t frame_step = surface->surfaceList[frameIndex].pitch;
printf("all_bbox_generated called! colorformat =%d\n", surface->surfaceList[frameIndex].colorFormat);
cv::Mat frame = cv::Mat(frame_height, frame_width, CV_8UC3, src_data, frame_step);
cv::Mat out_mat = cv::Mat(cv::Size(frame_width, frame_height), CV_8UC3);
cv::cvtColor(frame, out_mat, CV_RGB2BGR);
char yuv_name[100] = "";
sprintf(yuv_name, "yuv_%ld.png", appCtx->kafka_last_send_time);
cv::imwrite(yuv_name, out_mat);
}
return;
}
调用位置在convert_batch_and_push_to_input_thread方法中完成Transform后:
save_transformed_plate_images(mem->surf);
printf(
"\n---------------->saved transformed plate images to disk prior to sgie "
"detection");
即可打印出来图片。
另外还有其他小的注意点:
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/types_c.h>
头文件及makefile配置,就不过多赘述了。
CFLAGS+=-I/usr/local/include/opencv4/
整个代码段展示:
//zwh start
static void save_transformed_plate_images(NvBufSurface * surface) {
for (uint frameIndex = 0; frameIndex < surface->numFilled;
frameIndex++) {
void *src_data = NULL;
src_data = (char *)malloc(surface->surfaceList[frameIndex].dataSize);
if (src_data == NULL) {
g_print("Error: failed to malloc src_data \n");
}
cudaMemcpy((void *)src_data,
(void *)surface->surfaceList[frameIndex].dataPtr,
surface->surfaceList[frameIndex].dataSize,
cudaMemcpyDeviceToHost);
gint frame_width = (gint)surface->surfaceList[frameIndex].width;
gint frame_height = (gint)surface->surfaceList[frameIndex].height;
size_t frame_step = surface->surfaceList[frameIndex].pitch;
printf("all_bbox_generated called! colorformat =%d\n", surface->surfaceList[frameIndex].colorFormat);
cv::Mat frame = cv::Mat(frame_height, frame_width, CV_8UC3, src_data, frame_step);
cv::Mat out_mat = cv::Mat(cv::Size(frame_width, frame_height), CV_8UC3);
cv::cvtColor(frame, out_mat, CV_RGB2BGR);
char yuv_name[100] = "";
sprintf(yuv_name, "yuv_%ld.png", appCtx->kafka_last_send_time);
cv::imwrite(yuv_name, out_mat);
}
return;
}
static gboolean
convert_batch_and_push_to_input_thread (GstNvInfer *nvinfer,
GstNvInferBatch *batch, GstNvInferMemory *mem)
{
NvBufSurfTransform_Error err = NvBufSurfTransformError_Success;
std::string nvtx_str;
/* Set the transform session parameters for the conversions executed in this
* thread. */
err = NvBufSurfTransformSetSessionParams (&nvinfer->transform_config_params);
if (err != NvBufSurfTransformError_Success) {
GST_ELEMENT_ERROR (nvinfer, STREAM, FAILED,
("NvBufSurfTransformSetSessionParams failed with error %d", err), (NULL));
return FALSE;
}
nvtxEventAttributes_t eventAttrib = {0};
eventAttrib.version = NVTX_VERSION;
eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
eventAttrib.colorType = NVTX_COLOR_ARGB;
eventAttrib.color = 0xFFFF0000;
eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
nvtx_str = "convert_buf batch_num=" + std::to_string(nvinfer->current_batch_num);
eventAttrib.message.ascii = nvtx_str.c_str();
nvtxDomainRangePushEx(nvinfer->nvtx_domain, &eventAttrib);
if (batch->frames.size() > 0) {
/* Batched tranformation. */
err = NvBufSurfTransform (&nvinfer->tmp_surf, mem->surf,
&nvinfer->transform_params);
}
nvtxDomainRangePop (nvinfer->nvtx_domain);
if (err != NvBufSurfTransformError_Success) {
GST_ELEMENT_ERROR (nvinfer, STREAM, FAILED,
("NvBufSurfTransform failed with error %d while converting buffer", err),
(NULL));
return FALSE;
}
save_transformed_plate_images(mem->surf);
printf(
"\n---------------->saved transformed plate images to disk prior to sgie "
"detection");
LockGMutex locker (nvinfer->process_lock);
/* Push the batch info structure in the processing queue and notify the output
* thread that a new batch has been queued. */
g_queue_push_tail (nvinfer->input_queue, batch);
g_cond_broadcast (&nvinfer->process_cond);
return TRUE;
}
————————————————
版权声明:本文为CSDN博主「zhang-wen-han」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_35377454/article/details/123797606
文章来源: blog.csdn.net,作者:AI视觉网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/125677194
- 点赞
- 收藏
- 关注作者
评论(0)