tensorflow安装GPU版本

举报
Echo_Wish 发表于 2022/07/04 09:51:11 2022/07/04
【摘要】 tensorflow安装GPU

tensorflow安装GPU版本主要要点

1.先通过该网站查看tensorflow和cuda和cudnn版本以及visual studio(MSVC)的对应关系。(可供参考)

https://www.tensorflow.org/install/source_windows#gpu

在英伟达控制面板,点击右下角的系统信息,可查看驱动的版本信息,点击上方的组件,可查看需要的cuda的版本(这里指的是你的电脑支持的最高版本的cuda driver版本,并不是推荐你安装这个,仅参考)

选择cuda的版本比较麻烦,需要兼顾tensorflow,显卡驱动版本,电脑版本。

可以参考一下这个,驱动版本和cuda的版本对应,只要驱动版本符合大于等于的要求就可以使用对应的cuda版本。

在这里插入图片描述

2.在这个网站上根据自己需要下载对应版本的cuda toolkit,如果网络很好可以选择下载较小的network包,一般建议安装local本地包。

https://developer.nvidia.com/cuda-toolkit-archive

安装时可以选择精简安装,也可以自定义安装,可选择想安装的插件,一般可以默认全选。

在安装完成后,会自动添加一部分cuda的环境变量

cuda的环境变量不需要再手动添加了。

注:可以看这篇文章了解cuda driver和cuda toolkit的区别,加深理解。

https://www.cnblogs.com/marsggbo/p/11838823.html

3.在这选择对应的cuda和tensorflow的版本的cudnn下载。

https://developer.nvidia.com/rdp/cudnn-archive

4.下载完成后,解压文件得到lib,bin,include和一个txt文件,将三个文件夹下的三个文件分别对应复制到cuda的安装路径下的对应文件夹下(默认安装的话是C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0下的lib,bin,include文件夹下)

5.下面添加cudnn的环境变量,先新建一个系统变量,如下图,然后在系统变量的path下进行编辑,新建如第二张图的两个解析路径。

在这里插入图片描述

在这里插入图片描述

在安装后cuda后可以通过cmd输入nvcc -V验证一下。

在安装好tensorflow-gpu后,

执行下面代码,如果打印use GPU true,则代表gpu安装完成,可以使用gpu进行训练。

import tensorflow as tf

gpu_ok = tf.test.is_gpu_available()
print("tf version:", tf.__version__)
print("use GPU", gpu_ok)

我的环境以及最终安装完成的版本(rtx2060驱动版本451.67,cuda10.0.130,cudnn7.6.2.24,tensorflow-gpu1.15.4,win10x64)

仅供参考

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。