hands-on-data-analysis 第二单元 - 数据清洗及特征处理

举报
陈沧夜 发表于 2022/06/17 23:43:12 2022/06/17
【摘要】 hands-on-data-analysis 第二单元 - 数据清洗及特征处理 文章目录 hands-on-data-analysis 第二单元 - 数据清洗及特征处理1.缺失值观察与处理1.1...

hands-on-data-analysis 第二单元 - 数据清洗及特征处理

1.缺失值观察与处理

首先当然是导入相应的模块

#加载所需的库
import numpy as np
import pandas as pd

  
 
  • 1
  • 2
  • 3

1.1 缺失值观察

接下来就是观察缺失值:

df.info()

df.info()

  
 
  • 1
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  891 non-null    int64  
 1   Survived     891 non-null    int64  
 2   Pclass       891 non-null    int64  
 3   Name         891 non-null    object 
 4   Sex          891 non-null    object 
 5   Age          714 non-null    float64
 6   SibSp        891 non-null    int64  
 7   Parch        891 non-null    int64  
 8   Ticket       891 non-null    object 
 9   Fare         891 non-null    float64
 10  Cabin        204 non-null    object 
 11  Embarked     889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

df.isnull().sum()

PassengerId      0
Survived         0
Pclass           0
Name             0
Sex              0
Age            177
SibSp            0
Parch            0
Ticket           0
Fare             0
Cabin          687
Embarked         2
dtype: int64

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

1.2 缺失值处理

数值列读取数据后,空缺值的NaN为浮点型,最好用np.nan判断是否是NaN。

isnull()可以筛选出缺失的值

df[df['Age'].isnull()]
df.tail(5)

  
 
  • 1
  • 2

np.isnan()也可以筛选出缺失的值

df[np.isnan(df['Age'])]
df.tail(5)

  
 
  • 1
  • 2

但是,np.isnan不可以用来与任何数值进行>,==!=之类的比较

np.nan != np.nan

  
 
  • 1
True

  
 
  • 1

df.dropna(inplace=True)可以用来丢弃掉有NaN数据的那一行,其中inplace=True表示修改原数据。

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html

df.fillna(0,inplace=True) 可以用来将NaN数据用0填充,其中inplace=True表示修改原数据。

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html

2.重复值

重复值可以使用df.duplicated()来查询

df[df.duplicated()]

  
 
  • 1

drop_duplicates()可以用来删除重复值

df = df.drop_duplicates()

  
 
  • 1

3.分箱(离散化)处理

3.1.平均分箱

# 将连续变量Age平均分箱成5个年龄段,并分别用类别变量12345表示
df['AgeBand'] = pd.cut(df['Age'], 5,labels = [1,2,3,4,5])

  
 
  • 1
  • 2

3.2.划分分箱

df['AgeBand'] = pd.cut(df['Age'],[0,5,15,30,50,80],labels = [1,2,3,4,5])

  
 
  • 1

3.3.概率分箱

df['AgeBand'] = pd.qcut(df['Age'],[0,0.1,0.3,0.5,0.7,0.9],labels = [1,2,3,4,5])

  
 
  • 1

4.文本变量进行转换

4.1. 查看文本变量名和种类

#方法一: value_counts
df['Sex'].value_counts()

  
 
  • 1
  • 2
#方法二: unique
df['Sex'].unique()
df['Sex'].nunique()

  
 
  • 1
  • 2
  • 3

4.2 文本转换

#将类别文本转换为12345
#方法一: replace
df['Sex_num'] = df['Sex'].replace(['male','female'],[1,2])

  
 
  • 1
  • 2
  • 3
#方法二: map
df['Sex_num'] = df['Sex'].map({'male': 1, 'female': 2})

  
 
  • 1
  • 2
#方法三: 使用sklearn.preprocessing的LabelEncoder
from sklearn.preprocessing import LabelEncoder
for feat in ['Cabin', 'Ticket']:
    lbl = LabelEncoder()
    print(f"feat is {feat}") 
    print("end")
    label_dict = dict(zip(df[feat].unique(), range(df[feat].nunique())))
    print(f"label_dict is {label_dict}")
    print("end label_dict")
    df[feat + "_labelEncode"] = df[feat].map(label_dict)
    df[feat + "_labelEncode"] = lbl.fit_transform(df[feat].astype(str))

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

5. 独热编码

#OneHotEncoder
for feat in ["Age", "Embarked"]:
    x = pd.get_dummies(df[feat], prefix=feat)
    df = pd.concat([df, x], axis=1)
df.head()

  
 
  • 1
  • 2
  • 3
  • 4
  • 5

参考资料

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.qcut.html

本项目地址:

hands-on-data-analysis 第二单元 - 飞桨AI Studio (baidu.com)

文章来源: blog.csdn.net,作者:沧夜2021,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/CANGYE0504/article/details/125325128

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。