自动驾驶多边形iou计算Shapely库笔记
参考:https://cloud.tencent.com/developer/ask/42755,https://blog.csdn.net/u014421797/article/details/89501572,
https://www.itranslater.com/qa/details/2582747861733606400
两个矩形的交并比计算交简单
直接复制第二个参考链接中的代码
-
def IoU(box1, box2):
-
'''
-
计算两个矩形框的交并比
-
:param box1: list,第一个矩形框的左上角和右下角坐标
-
:param box2: list,第二个矩形框的左上角和右下角坐标
-
:return: 两个矩形框的交并比iou
-
'''
-
x1 = max(box1[0], box2[0]) # 交集左上角x
-
x2 = min(box1[2], box2[2]) # 交集右下角x
-
y1 = max(box1[1], box2[1]) # 交集左上角y
-
y2 = min(box1[3], box2[3]) # 交集右下角y
-
-
overlap = max(0., x2-x1) * max(0., y2-y1)
-
union = (box1[2]-box1[0]) * (box1[3]-box1[1]) \
-
+ (box2[2]-box2[0]) * (box2[3]-box2[1]) \
-
- overlap
-
-
return overlap/union
-
if __name__ == '__main__':
-
# box = [左上角x1,左上角y1,右下角x2,右下角y2]
-
box1 = [10, 0, 15, 10]
-
box2 = [12, 5, 20, 15]
-
iou = IoU(box1, box2)
非规则四边形的IOU计算
测试发现
Polygon().convex_hull,排序的结果特点,以最低点的一点为起点,(若y值一样小,则比较x较小的作为起点)顺时针排列所有点
1
-
import shapely
-
import numpy as np
-
from shapely.geometry import Polygon, MultiPoint, mapping
-
-
def bbox_iou_eval(box1, box2):
-
box1 = np.array(box1).reshape(4, 2)
-
poly1 = Polygon(box1).convex_hull #POLYGON ((0 0, 0 2, 2 2, 2 0, 0 0))
-
print(type(mapping(poly1)['coordinates'])) # (((0.0, 0.0), (0.0, 2.0), (2.0, 2.0), (2.0, 0.0), (0.0, 0.0)),)
-
poly_arr = np.array(poly1)
-
-
box2 = np.array(box2).reshape(4, 2)
-
poly2 = Polygon(box2).convex_hull
-
-
if not poly1.intersects(poly2): # 如果两四边形不相交
-
iou = 0
-
else:
-
try:
-
inter_area = poly1.intersection(poly2).area # 相交面积
-
iou = float(inter_area) / (poly1.area + poly2.area - inter_area)
-
except shapely.geos.TopologicalError:
-
print('shapely.geos.TopologicalError occured, iou set to 0')
-
iou = 0
-
return iou
-
if __name__ == '__main__':
-
# box = [四个点的坐标,顺序无所谓]
-
box3 = [0, 0, 2, 2, 2, 0, 0, 2] # 左上,右上,右下,左下
-
box4 = [1, 1, 1, 3, 3, 3, 3, 1]
-
iou = bbox_iou_eval(box3, box4)
-
print(iou)
Polygon类型中的坐标数据的获得
有时候想要用到到排序好的几个坐标数据,但Polygon中没有直接得到的坐标点的方法,下面是几种方法
第一种:使用mapping
总结:1.可使用nump的功能,将坐标点转化为n*2的形式,
2.Polygon(n*2).convex_hull对坐标点进行排序
3.使用mapping得到排序好对象的内容
4.使用字典和元组切片的方式得到坐标点
为了防止坐标点会多一个,为了闭合,切片方式中:-1
-
from shapely.geometry import Polygon, MultiPoint, mapping
-
box3 = [0, 0, 2, 2, 2, 0, 0, 2]
-
box1 = np.array(box1).reshape(4, 2)
-
poly1 = Polygon(box1).convex_hull
-
-
print(poly1) # POLYGON ((0 0, 0 2, 2 2, 2 0, 0 0))
-
map_poly = mapping(poly1) # 这时的值就是一个字典可以通过字典方式访问
-
'''{'type': 'Polygon', 'coordinates': (((0.0, 0.0), (0.0, 2.0), (2.0, 2.0), (2.0, 0.0), (0.0, 0.0)),)}'''
-
print(['coordinates']) # 这是一个元组
-
'''(((0.0, 0.0), (0.0, 2.0), (2.0, 2.0), (2.0, 0.0), (0.0, 0.0)),)'''
-
print(map_poly['coordinates'][0][:-1])
-
'''((0.0, 0.0), (0.0, 2.0), (2.0, 2.0), (2.0, 0.0)) '''
第二种:使用内部属性.exterior.coords.xy
-
box3 = [0, 0, 2, 2, 2, 0, 0, 2] # 左上,右上,右下,左下
-
box1 = np.array(box3).reshape(4, 2) # 将8个点转换为4*2的矩阵形式
-
poly1 = Polygon(box1).convex_hull
-
x, y = poly1.exterior.coords.xy
-
print(x, y) #array('d', [0.0, 0.0, 2.0, 2.0, 0.0]) array('d', [0.0, 2.0, 2.0, 0.0, 0.0])
-
print(list(x)) #[0.0, 0.0, 2.0, 2.0, 0.0]
第三种:使用指针*方式
解释:
-
list(zip(*poly1.exterior.coords.xy))
-
'''
-
1.*poly1.exterior.coords.xy,得到两个分开的arry类型的x,y的数组
-
2.使用zip将两个一维数组压缩成一对数值为一个元组的多个点坐标
-
3.将点坐标放在列表中
-
'''
box3 = [0, 0, 2, 2, 2, 0, 0, 2] # 左上,右上,右下,左下
box1 = np.array(box3).reshape(4, 2) # 将8个点转换为4*2的矩阵形式
poly1 = Polygon(box1).convex_hull
x, y = poly1.exterior.coords.xy
print(x, y)
# array('d', [0.0, 0.0, 2.0, 2.0, 0.0]) array('d', [0.0, 2.0, 2.0, 0.0, 0.0])
xy = poly1.exterior.coords.xy
print(*xy) #同上 ,相当于先.exterior.coords.xy,再使用*取的内容
xy_list = list(zip(*poly1.exterior.coords.xy))
print(xy_list)#[(0.0, 0.0), (0.0, 2.0), (2.0, 2.0), (2.0, 0.0), (0.0, 0.0)]
第四种,最简单直接
-
xy = poly1.exterior.coords# 这里的xy是一个对象需要用list完成显示
-
print(list(xy)) #[(0.0, 0.0), (0.0, 2.0), (2.0, 2.0), (2.0, 0.0), (0.0, 0.0)]
第五种
-
xy = poly1.exterior.coords
-
for i,j in xy:
-
print(x,y)
原文链接:https://blog.csdn.net/weixin_43794311/article/details/120783677
以下内容转自:
python Shapely包使用,实现多边形iou_未来男孩的博客-CSDN博客_python shapely
python Shapely 使用指南
刚从学习了Shapely包使用,怕忘记,在这里记录一下。
阅读目录
1、引入包
from shapely.geometry import Point
from shapely.geometry import LineString
2、共有的变量和方法
object.area
Returns the area (float) of the object.
object.bounds
返回对象的(minx,miny,maxx,maxy)元组(float类型)
object.length
返回对象的长度
object.geom_type
返回对象类型
object.distance(other)
返回本对象和另一个对象的距离
object.representative_point()
Returns a cheaply computed point that is guaranteed to be within the geometric object.
-
>>> from shapely.geometry import Point
-
>>> print Point(0,0).distance(Point(0,1))
-
1.0
-
>>> from shapely.geometry import LineString
-
>>> line = LineString([(0,0), (1,1), (1,2)])
-
>>> line.area
-
0.0
-
>>> line.bounds
-
(0.0, 0.0, 1.0, 2.0)
-
>>> line.length
-
2.414213562373095
-
>>> line.geom_type
-
'LineString'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
3、Point
class Point(coordinates)
三种赋值方式
-
>>> point = Point(0,0)
-
>>> point_2 = Point((0,0))
-
>>> point_3 = Point(point)
- 1
- 2
- 3
一个点对象有area和长度都为0
-
>>> point.area
-
0.0
-
>>> point.length
-
0.0
坐标可以通过coords或x、y、z得到
-
>>> p = Point(2,3)
-
>>> p.coords
-
<shapely.coords.CoordinateSequence object at 0x7ffbc3d60dd0>
-
>>> list(p.coords)
-
[(2.0, 3.0)]
-
>>> p.x
-
2.0
-
>>> p.y
-
3.0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
coords可以被切片
-
>>> p.coords[:]
-
[(2.0, 3.0)]
- 1
- 2
4、LineStrings
LineStrings构造函数传入参数是2个或多个点序列
一个LineStrings对象area为0,长度非0
-
>>> line = LineString([(0,0), (0,1), (1,2)])
-
>>> line.area
-
0.0
-
>>> line.length
-
2.414213562373095
获得坐标
-
>>> line.coords[:]
-
[(0.0, 0.0), (0.0, 1.0), (1.0, 2.0)]
-
>>> list(line.coords)
-
[(0.0, 0.0), (0.0, 1.0), (1.0, 2.0)]
- 1
- 2
- 3
- 4
LineString依然可以接受一个同类型对象
-
>>> line2 = LineString(line)
-
>>> line2.coords[:]
-
[(0.0, 0.0), (0.0, 1.0), (1.0, 2.0)]
- 1
- 2
- 3
5、常见格式转换
wkt: Well Know Text
wkb: Well Kown Binary
-
>>> Point(1,1).wkt
-
'POINT (1 1)'
-
>>> Point(1,1).wkb
-
'\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?'
-
>>> Point(1,1).wkb.encode('hex')
-
'0101000000000000000000f03f000000000000f03f'
-
>>>
-
>>> Point(1,1).wkb.encode('hex')
-
'0101000000000000000000f03f000000000000f03f'
两者都有loads和dumps方法
对于wkt
-
>>> from shapely.wkt import dumps, loads
-
>>> s = dumps(Point(1,2))
-
>>> s
-
'POINT (1.0000000000000000 2.0000000000000000)'
-
>>> ss = loads(s)
-
>>> ss
-
<shapely.geometry.point.Point object at 0x7ffbc3d783d0>
-
>>> ss.coords[:]
-
[(1.0, 2.0)]
对于wkb
-
>>> from shapely.wkb import dumps, loads
-
>>> s = dumps(Point(1,2), hex=True)
-
>>> s
-
'0101000000000000000000F03F0000000000000040'
-
>>> ss = loads(s, hex=True)
-
>>> ss
-
<shapely.geometry.point.Point object at 0x7ffbc3d78790>
-
>>> ss.coords
-
<shapely.coords.CoordinateSequence object at 0x7ffbc3d783d0>
-
>>> ss.coords[:]
-
[(1.0, 2.0)]
补充代码:
-
# ------------------------------------------------------------------------------------------------------------------
-
# 在目标检测中一个很重要的问题就是NMS及IOU计算,而一般所说的目标检测检测的box是规则矩形框,计算IOU也非常简单,有两种方法:
-
-
# 1. 两个矩形的宽之和减去组合后的矩形的宽就是重叠矩形的宽,同比重叠矩形的高
-
# IOU = 交集部分/包含两个四边形最小多边形的面积
-
-
# 2. 右下角的minx减去左上角的maxx就是重叠矩形的宽,同比高
-
# IOU = 重叠面积 / (两矩形面积和—重叠面积)
-
-
# 不规则四边形就不能通过这种方式来计算,python的shapely包可以直接做到,下面给出的代码和注释
-
# 来自:白翔老师的textBoxes++论文源码,
-
# ------------------------------------------------------------------------------------------------------------------
-
-
import numpy as np
-
import shapely
-
from shapely.geometry import Polygon, MultiPoint # 多边形
-
-
line1 = [2, 0, 2, 2, 0, 0, 0, 2] # 四边形四个点坐标的一维数组表示,[x,y,x,y....];随意分别放入框的四个角坐标
-
a = np.array(line1).reshape(4, 2) # 四边形二维坐标表示
-
poly1 = Polygon(a).convex_hull # python四边形对象,会自动计算四个点,最后四个点顺序为:左上 左下 右下 右上 左上
-
print(Polygon(a).convex_hull) # 可以打印看看是不是这样子(0 0, 0 2, 2 2, 2 0, 0 0)
-
-
line2 = [1, 1, 4, 1, 4, 4, 1, 4]
-
b = np.array(line2).reshape(4, 2)
-
poly2 = Polygon(b).convex_hull
-
print(Polygon(b).convex_hull)
-
-
union_poly = np.concatenate((a, b)) # 合并两个box坐标,变为8*2
-
print(union_poly)
-
print(MultiPoint(union_poly).convex_hull) # 包含两四边形最小的多边形点;(0 0, 0 2, 1 4, 4 4, 4 1, 2 0, 0 0)
-
if not poly1.intersects(poly2): # 如果两四边形不相交
-
iou = 0
-
else:
-
try:
-
inter_area = poly1.intersection(poly2).area # 相交面积
-
print(inter_area)
-
# union_area = poly1.area + poly2.area - inter_area
-
union_area = MultiPoint(union_poly).convex_hull.area # 最小多边形点面积
-
print(union_area)
-
if union_area == 0:
-
iou = 0
-
# iou = float(inter_area) / (union_area-inter_area) #错了
-
iou = float(inter_area) / union_area
-
# iou=float(inter_area) /(poly1.area+poly2.area-inter_area)
-
# 源码中给出了两种IOU计算方式,第一种计算的是: 交集部分/包含两个四边形最小多边形的面积
-
# 第二种: 交集 / 并集(常见矩形框IOU计算方式)
-
except shapely.geos.TopologicalError:
-
print('shapely.geos.TopologicalError occured, iou set to 0')
-
iou = 0
-
-
print(a)
-
-
print(iou)
文章来源: blog.csdn.net,作者:AI视觉网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/125039344
- 点赞
- 收藏
- 关注作者
评论(0)