Redis学习完结篇:经典面试题+重点知识
本文转自 来源于捡田螺的小男孩 ,作者捡田螺的小男孩
Redis介绍
Redis,英文全称是Remote Dictionary Server(远程字典服务),是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。
与MySQL数据库不同的是,Redis的数据是存在内存中的。它的读写速度非常快,每秒可以处理超过10万次读写操作。因此redis被广泛应用于缓存,另外,Redis也经常用来做分布式锁。除此之外,Redis支持事务、持久化、LUA 脚本、LRU 驱动事件、多种集群方案。
Redis基本数据类型结构Redis
- 有以下这五种基本类型:
String(字符串)应用场景:共享session、分布式锁,计数器、限流
Hash(哈希)应用场景:缓存用户信息
List(列表)应用场景:消息队列,文章列表
Set(集合)应用场景:用户标签、生成随机数抽奖、社交需求
zset(有序集合)应用场景:排行榜,社交需求
- 它还有三种特殊的数据结构类型
Geospatial 专门用来做地图坐标
Hyperloglog 做基数统计
Bitmap 用一个比特位反应某个元素的状态
String
简介:String是Redis最基础的数据结构类型,它是二进制安全的,可以存储图片或者序列化的对象,值最大存储为512M
简单使用举例: set key value、get key等
应用场景:共享session、分布式锁,计数器、限流。
内部编码有3种,int(8字节长整型)/embstr(小于等于39字节字符串)/raw(大于39个字节字符串)
C语言的字符串是char[]实现的,而Redis使用SDS(simple dynamic string) 封装,sds源码如下:
struct sdshdr{
unsigned int len; // 标记buf的长度
unsigned int free; //标记buf中未使用的元素个数
char buf[]; // 存放元素的坑
}
举例其中一点,SDS中,O(1)时间复杂度,就可以获取字符串长度;
而C 字符串,需要遍历整个字符串,时间复杂度为O(n).
hash
简介:在Redis中,哈希类型是指v(值)本身又是一个键值对(k-v)结构
简单使用举例:hset key field value 、hget key field
内部编码:ziplist(压缩列表) 、hashtable(哈希表)
应用场景:缓存用户信息等。
注意点:如果开发使用hgetall,哈希元素比较多的话,可能导致Redis阻塞,可以使用hscan。而如果只是获取部分field,建议使用hmget。
list列表
简介:列表(list)类型是用来存储多个有序的字符串,一个列表最多可以存储2^32-1个元素。
简单实用举例:lpush key value [value …] 、lrange key start end
内部编码:ziplist(压缩列表)、linkedlist(链表)
应用场景:消息队列,文章列表,
list应用场景参考以下:
lpush+lpop=Stack(栈)
lpush+rpop=Queue(队列)
lpsh+ltrim=Capped Collection(有限集合)
lpush+brpop=Message Queue(消息队列)
Set集合
简介:集合(set)类型也是用来保存多个的字符串元素,但是不允许重复元素
简单使用举例:sadd key element [element …]、smembers key
内部编码:intset(整数集合)、hashtable(哈希表)
注意点:smembers和lrange、hgetall都属于比较重的命令,如果元素过多存在阻塞Redis的可能性,可以使用sscan来完成。
应用场景:用户标签,生成随机数抽奖、社交需求。
zset 有序集合
简介:已排序的字符串集合,同时元素不能重复
简单格式举例:zadd key score member [score member …],zrank key member
底层内部编码:ziplist(压缩列表)、skiplist(跳跃表)
应用场景:排行榜,社交需求(如用户点赞)。
Redis为什么这么快
基于内存实现
内存读写是比在磁盘快很多的,Redis基于内存存储实现的数据库,相对于数据存在磁盘的MySQL数据库,省去磁盘I/O的消耗。
高效的数据结构
Mysql索引为了提高效率,选择了B+树的数据结构。其实合理的数据结构,就是可以让你的应用/程序更快。先看下Redis的数据结构&内部编码图:
SDS简单动态字符串
字符串长度处理:Redis获取字符串长度,时间复杂度为O(1),而C语言中,需要从头开始遍历,复杂度为O(n);
空间预分配:字符串修改越频繁的话,内存分配越频繁,就会消耗性能,而SDS修改和空间扩充,会额外分配未使用的空间,减少性能损耗。
惰性空间释放:SDS 缩短时,不是回收多余的内存空间,而是free记录下多余的空间,后续有变更,直接使用free中记录的空间,减少分配。
二进制安全:Redis可以存储一些二进制数据,在C语言中字符串遇到’\0’会结束,而 SDS中标志字符串结束的是len属性。
字典
Redis 作为 K-V 型内存数据库,所有的键值就是用字典来存储。字典就是哈希表,比如HashMap,通过key就可以直接获取到对应的value。而哈希表的特性,在O(1)时间复杂度就可以获得对应的值。
跳跃表
跳跃表是Redis特有的数据结构,就是在链表的基础上,增加多级索引提升查找效率。
跳跃表支持平均 O(logN),最坏 O(N)复杂度的节点查找,还可以通过顺序性操作批量处理节点。
合理的数据编码
Redis 支持多种数据数据类型,每种基本类型,可能对多种数据结构。什么时候,使用什么样数据结构,使用什么样编码,是redis设计者总结优化的结果。
合理的线程模型
IO多路复用
多路I/O复用技术可以让单个线程高效的处理多个连接请求,而Redis使用用epoll作为I/O多路复用技术的实现。并且,Redis自身的事件处理模型将epoll中的连接、读写、关闭都转换为事件,不在网络I/O上浪费过多的时间。
什么是I/O多路复用?
I/O :网络 I/O
多路 :多个网络连接
复用:复用同一个线程。
IO多路复用其实就是一种同步IO模型,它实现了一个线程可以监视多个文件句柄;一旦某个文件句柄就绪,就能够通知应用程序进行相应的读写操作;而没有文件句柄就绪时,就会阻塞应用程序,交出cpu。
单线程模型
Redis是单线程模型的,而单线程避免了CPU不必要的上下文切换和竞争锁的消耗。也正因为是单线程,如果某个命令执行过长(如hgetall命令),会造成阻塞。Redis是面向快速执行场景的数据库。所以要慎用如smembers和lrange、hgetall等命令。
Redis 6.0 引入了多线程提速,它的执行命令操作内存的仍然是个单线程。
虚拟内存机制
Redis直接自己构建了VM机制 ,不会像一般的系统会调用系统函数处理,会浪费一定的时间去移动和请求。
虚拟内存机制就是暂时把不经常访问的数据(冷数据)从内存交换到磁盘中,从而腾出宝贵的内存空间用于其它需要访问的数据(热数据)。通过VM功能可以实现冷热数据分离,使热数据仍在内存中、冷数据保存到磁盘。这样就可以避免因为内存不足而造成访问速度下降的问题。
Redis的常用应用场景
缓存
排行榜
计数器应用
共享Session
分布式锁
社交网络
消息队列
位操作
缓存
我们一提到redis,自然而然就想到缓存,国内外中大型的网站都离不开缓存。合理的利用缓存,比如缓存热点数据,不仅可以提升网站的访问速度,还可以降低数据库DB的压力。并且,Redis相比于memcached,还提供了丰富的数据结构,并且提供RDB和AOF等持久化机制,强的一批。
排行榜
当今互联网应用,有各种各样的排行榜,如电商网站的月度销量排行榜、社交APP的礼物排行榜、小程序的投票排行榜等等。Redis提供的zset数据类型能够实现这些复杂的排行榜。
计数器
各大网站、APP应用经常需要计数器的功能,如短视频的播放数、电商网站的浏览数。这些播放数、浏览数一般要求实时的,每一次播放和浏览都要做加1的操作,如果并发量很大对于传统关系型数据的性能是一种挑战。Redis天然支持计数功能而且计数的性能也非常好,可以说是计数器系统的重要选择。
共享Session
如果一个分布式Web服务将用户的Session信息保存在各自服务器,用户刷新一次可能就需要重新登录了,这样显然有问题。实际上,可以使用Redis将用户的Session进行集中管理,每次用户更新或者查询登录信息都直接从Redis中集中获取。
分布式锁
几乎每个互联网公司中都使用了分布式部署,分布式服务下,就会遇到对同一个资源的并发访问的技术难题,如秒杀、下单减库存等场景。
用synchronize或者reentrantlock本地锁肯定是不行的。
如果是并发量不大话,使用数据库的悲观锁、乐观锁来实现没啥问题。
但是在并发量高的场合中,利用数据库锁来控制资源的并发访问,会影响数据库的性能。
实际上,可以用Redis的setnx来实现分布式的锁。
社交网络推送
赞/踩、粉丝、共同好友/喜好、推送、下拉刷新等是社交网站的必备功能,由于社交网站访问量通常比较大,而且传统的关系型数据不太适保存 这种类型的数据,Redis提供的数据结构即求交并集和随机数据等可以相对比较容易地实现这些功能。
消息队列
消息队列是大型网站必用中间件,如ActiveMQ、RabbitMQ、Kafka等流行的消息队列中间件,主要用于业务解耦、流量削峰及异步处理实时性低的业务。Redis提供了发布/订阅及阻塞队列功能,能实现一个简单的消息队列系统。另外,这个不能和专业的消息中间件相比。
位操作
用于数据量上亿的场景下,例如几亿用户系统的签到,去重登录次数统计,某用户是否在线状态等等。腾讯10亿用户,要几个毫秒内查询到某个用户是否在线,能怎么做?千万别说给每个用户建立一个key,然后挨个记(你可以算一下需要的内存会很恐怖,而且这种类似的需求很多。这里要用到位操作——使用setbit、getbit、bitcount命令。原理是:redis内构建一个足够长的数组,每个数组元素只能是0和1两个值,然后这个数组的下标index用来表示用户id(必须是数字哈),那么很显然,这个几亿长的大数组就能通过下标和元素值(0和1)来构建一个记忆系统。
怎么实现Redis的高可用
我们在项目中使用Redis,肯定不会是单点部署Redis服务的。因为,单点部署一旦宕机,就不可用了。为了实现高可用,通常的做法是,将数据库复制多个副本以部署在不同的服务器上,其中一台挂了也可以继续提供服务。Redis 实现高可用有三种部署模式:主从模式,哨兵模式,集群模式。
Redis底层用的什么协议
RESP,英文全称是Redis Serialization Protocol,它是专门为redis设计的一套序列化协议. 这个协议其实在redis的1.2版本时就已经出现了,但是到了redis2.0才最终成为redis通讯协议的标准。
RESP主要有实现简单、解析速度快、可读性好等优点。
Redis的事务机制
为什么Redis6.0改用多线程
Redis6.0之前,Redis在处理客户端的请求时,包括读socket、解析、执行、写socket等都由一个顺序串行的主线程处理,这就是所谓的“单线程”。
Redis6.0之前为什么一直不使用多线程?使用Redis时,几乎不存在CPU成为瓶颈的情况, Redis主要受限于内存和网络。例如在一个普通的Linux系统上,Redis通过使用pipelining每秒可以处理100万个请求,所以如果应用程序主要使用O(N)或O(log(N))的命令,它几乎不会占用太多CPU。
redis使用多线程并非是完全摒弃单线程,redis还是使用单线程模型
来处理客户端的请求,只是使用多线程来处理数据的读写和协议解析,执行命令还是使用单线程。
这样做的目的是因为redis的性能瓶颈在于网络IO而非CPU,使用多线程能提升IO读写的效率,从而整体提高redis的性能。
Redis与mysql如何保持双写一致性
1、缓存延时双删
2、删除缓存重试机制
3、读取biglog异步删除缓存
缓存延时双删
先删除缓存
再更新数据库
休眠一会(比如1秒),再次删除缓存。
这个休眠一会,一般多久呢?都是1秒?
这个休眠时间 = 读业务逻辑数据的耗时 + 几百毫秒。为了确保读请求结束,写请求可以删除读请求可能带来的缓存脏数据。
这种方案还算可以,只有休眠那一会(比如就那1秒),可能有脏数据,一般业务也会接受的。但是如果第二次删除缓存失败呢?缓存和数据库的数据还是可能不一致,对吧?给Key设置一个自然的expire过期时间,让它自动过期怎样?那业务要接受过期时间内,数据的不一致咯?还是有其他更佳方案呢?
删除缓存重试机制
因为延时双删可能会存在第二步的删除缓存失败,导致的数据不一致问题。可以使用这个方案优化:删除失败就多删除几次呀,保证删除缓存成功就可以了呀~ 所以可以引入删除缓存重试机制。
写请求更新数据库
缓存因为某些原因,删除失败
把删除失败的key放到消息队列
消费消息队列的消息,获取要删除的key
重试删除缓存操作
读取biglog异步删除缓存
重试删除缓存机制还可以吧,就是会造成好多业务代码入侵。其实,还可以这样优化:通过数据库的binlog来异步淘汰key。
以mysql为例吧
可以使用阿里的canal将binlog日志采集发送到MQ队列里面
然后通过ACK机制确认处理这条更新消息,删除缓存,保证数据缓存一致性
分布式锁的应用,需要注意哪些。抢红包、秒杀
分布式锁,是控制分布式系统不同进程共同访问共享资源的一种锁的实现。秒杀下单、抢红包等等业务场景,都需要用到分布式锁,我们项目中经常使用Redis作为分布式锁。
选了Redis分布式锁的几种实现方法,大家来讨论下,看有没有啥问题哈。
命令setnx + expire分开写
setnx + value值是过期时间
set的扩展命令(set ex px nx)
set ex px nx + 校验唯一随机值,再删除
文章来源: blog.csdn.net,作者:洲的学习笔记,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/weixin_51484460/article/details/120788591
- 点赞
- 收藏
- 关注作者
评论(0)